78 lines
2.3 KiB
Python
78 lines
2.3 KiB
Python
import torch
|
|
from torch.nn import functional as F
|
|
|
|
|
|
class ResidualBlock(torch.nn.Module):
|
|
"""Residual block module in WaveNet."""
|
|
|
|
def __init__(
|
|
self,
|
|
kernel_size=3,
|
|
res_channels=64,
|
|
gate_channels=128,
|
|
skip_channels=64,
|
|
aux_channels=80,
|
|
dropout=0.0,
|
|
dilation=1,
|
|
bias=True,
|
|
use_causal_conv=False,
|
|
):
|
|
super().__init__()
|
|
self.dropout = dropout
|
|
# no future time stamps available
|
|
if use_causal_conv:
|
|
padding = (kernel_size - 1) * dilation
|
|
else:
|
|
assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size."
|
|
padding = (kernel_size - 1) // 2 * dilation
|
|
self.use_causal_conv = use_causal_conv
|
|
|
|
# dilation conv
|
|
self.conv = torch.nn.Conv1d(
|
|
res_channels, gate_channels, kernel_size, padding=padding, dilation=dilation, bias=bias
|
|
)
|
|
|
|
# local conditioning
|
|
if aux_channels > 0:
|
|
self.conv1x1_aux = torch.nn.Conv1d(aux_channels, gate_channels, 1, bias=False)
|
|
else:
|
|
self.conv1x1_aux = None
|
|
|
|
# conv output is split into two groups
|
|
gate_out_channels = gate_channels // 2
|
|
self.conv1x1_out = torch.nn.Conv1d(gate_out_channels, res_channels, 1, bias=bias)
|
|
self.conv1x1_skip = torch.nn.Conv1d(gate_out_channels, skip_channels, 1, bias=bias)
|
|
|
|
def forward(self, x, c):
|
|
"""
|
|
x: B x D_res x T
|
|
c: B x D_aux x T
|
|
"""
|
|
residual = x
|
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
|
x = self.conv(x)
|
|
|
|
# remove future time steps if use_causal_conv conv
|
|
x = x[:, :, : residual.size(-1)] if self.use_causal_conv else x
|
|
|
|
# split into two part for gated activation
|
|
splitdim = 1
|
|
xa, xb = x.split(x.size(splitdim) // 2, dim=splitdim)
|
|
|
|
# local conditioning
|
|
if c is not None:
|
|
assert self.conv1x1_aux is not None
|
|
c = self.conv1x1_aux(c)
|
|
ca, cb = c.split(c.size(splitdim) // 2, dim=splitdim)
|
|
xa, xb = xa + ca, xb + cb
|
|
|
|
x = torch.tanh(xa) * torch.sigmoid(xb)
|
|
|
|
# for skip connection
|
|
s = self.conv1x1_skip(x)
|
|
|
|
# for residual connection
|
|
x = (self.conv1x1_out(x) + residual) * (0.5**2)
|
|
|
|
return x, s
|