302 lines
10 KiB
Python
302 lines
10 KiB
Python
# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import Conv1d, ConvTranspose1d
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils.parametrizations import weight_norm
|
|
from torch.nn.utils.parametrize import remove_parametrizations
|
|
|
|
from TTS.utils.io import load_fsspec
|
|
|
|
LRELU_SLOPE = 0.1
|
|
|
|
|
|
def get_padding(k, d):
|
|
return int((k * d - d) / 2)
|
|
|
|
|
|
class ResBlock1(torch.nn.Module):
|
|
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block.
|
|
|
|
Network::
|
|
|
|
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o
|
|
|--------------------------------------------------------------------------------------------------|
|
|
|
|
|
|
Args:
|
|
channels (int): number of hidden channels for the convolutional layers.
|
|
kernel_size (int): size of the convolution filter in each layer.
|
|
dilations (list): list of dilation value for each conv layer in a block.
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
|
super().__init__()
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=get_padding(kernel_size, dilation[2]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x (Tensor): input tensor.
|
|
Returns:
|
|
Tensor: output tensor.
|
|
Shapes:
|
|
x: [B, C, T]
|
|
"""
|
|
for c1, c2 in zip(self.convs1, self.convs2):
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c1(xt)
|
|
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
|
xt = c2(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_parametrizations(l, "weight")
|
|
for l in self.convs2:
|
|
remove_parametrizations(l, "weight")
|
|
|
|
|
|
class ResBlock2(torch.nn.Module):
|
|
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block.
|
|
|
|
Network::
|
|
|
|
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o
|
|
|---------------------------------------------------|
|
|
|
|
|
|
Args:
|
|
channels (int): number of hidden channels for the convolutional layers.
|
|
kernel_size (int): size of the convolution filter in each layer.
|
|
dilations (list): list of dilation value for each conv layer in a block.
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
|
super().__init__()
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
for c in self.convs:
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs:
|
|
remove_parametrizations(l, "weight")
|
|
|
|
|
|
class HifiganGenerator(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
resblock_type,
|
|
resblock_dilation_sizes,
|
|
resblock_kernel_sizes,
|
|
upsample_kernel_sizes,
|
|
upsample_initial_channel,
|
|
upsample_factors,
|
|
inference_padding=5,
|
|
cond_channels=0,
|
|
conv_pre_weight_norm=True,
|
|
conv_post_weight_norm=True,
|
|
conv_post_bias=True,
|
|
):
|
|
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF)
|
|
|
|
Network:
|
|
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o
|
|
.. -> zI ---|
|
|
resblockN_kNx1 -> zN ---'
|
|
|
|
Args:
|
|
in_channels (int): number of input tensor channels.
|
|
out_channels (int): number of output tensor channels.
|
|
resblock_type (str): type of the `ResBlock`. '1' or '2'.
|
|
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`.
|
|
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`.
|
|
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution.
|
|
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2
|
|
for each consecutive upsampling layer.
|
|
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer.
|
|
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5.
|
|
"""
|
|
super().__init__()
|
|
self.inference_padding = inference_padding
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_factors)
|
|
# initial upsampling layers
|
|
self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3))
|
|
resblock = ResBlock1 if resblock_type == "1" else ResBlock2
|
|
# upsampling layers
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)):
|
|
self.ups.append(
|
|
weight_norm(
|
|
ConvTranspose1d(
|
|
upsample_initial_channel // (2**i),
|
|
upsample_initial_channel // (2 ** (i + 1)),
|
|
k,
|
|
u,
|
|
padding=(k - u) // 2,
|
|
)
|
|
)
|
|
)
|
|
# MRF blocks
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
self.resblocks.append(resblock(ch, k, d))
|
|
# post convolution layer
|
|
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias))
|
|
if cond_channels > 0:
|
|
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1)
|
|
|
|
if not conv_pre_weight_norm:
|
|
remove_parametrizations(self.conv_pre, "weight")
|
|
|
|
if not conv_post_weight_norm:
|
|
remove_parametrizations(self.conv_post, "weight")
|
|
|
|
def forward(self, x, g=None):
|
|
"""
|
|
Args:
|
|
x (Tensor): feature input tensor.
|
|
g (Tensor): global conditioning input tensor.
|
|
|
|
Returns:
|
|
Tensor: output waveform.
|
|
|
|
Shapes:
|
|
x: [B, C, T]
|
|
Tensor: [B, 1, T]
|
|
"""
|
|
o = self.conv_pre(x)
|
|
if hasattr(self, "cond_layer"):
|
|
o = o + self.cond_layer(g)
|
|
for i in range(self.num_upsamples):
|
|
o = F.leaky_relu(o, LRELU_SLOPE)
|
|
o = self.ups[i](o)
|
|
z_sum = None
|
|
for j in range(self.num_kernels):
|
|
if z_sum is None:
|
|
z_sum = self.resblocks[i * self.num_kernels + j](o)
|
|
else:
|
|
z_sum += self.resblocks[i * self.num_kernels + j](o)
|
|
o = z_sum / self.num_kernels
|
|
o = F.leaky_relu(o)
|
|
o = self.conv_post(o)
|
|
o = torch.tanh(o)
|
|
return o
|
|
|
|
@torch.no_grad()
|
|
def inference(self, c):
|
|
"""
|
|
Args:
|
|
x (Tensor): conditioning input tensor.
|
|
|
|
Returns:
|
|
Tensor: output waveform.
|
|
|
|
Shapes:
|
|
x: [B, C, T]
|
|
Tensor: [B, 1, T]
|
|
"""
|
|
c = c.to(self.conv_pre.weight.device)
|
|
c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate")
|
|
return self.forward(c)
|
|
|
|
def remove_weight_norm(self):
|
|
print("Removing weight norm...")
|
|
for l in self.ups:
|
|
remove_parametrizations(l, "weight")
|
|
for l in self.resblocks:
|
|
l.remove_weight_norm()
|
|
remove_parametrizations(self.conv_pre, "weight")
|
|
remove_parametrizations(self.conv_post, "weight")
|
|
|
|
def load_checkpoint(
|
|
self, config, checkpoint_path, eval=False, cache=False
|
|
): # pylint: disable=unused-argument, redefined-builtin
|
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
|
|
self.load_state_dict(state["model"])
|
|
if eval:
|
|
self.eval()
|
|
assert not self.training
|
|
self.remove_weight_norm()
|