ai-content-maker/.venv/Lib/site-packages/librosa/segment.py

1415 lines
50 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Temporal segmentation
=====================
Recurrence and self-similarity
------------------------------
.. autosummary::
:toctree: generated/
cross_similarity
recurrence_matrix
recurrence_to_lag
lag_to_recurrence
timelag_filter
path_enhance
Temporal clustering
-------------------
.. autosummary::
:toctree: generated/
agglomerative
subsegment
"""
from decorator import decorator
import numpy as np
import scipy
import scipy.signal
import scipy.ndimage
import sklearn
import sklearn.cluster
import sklearn.feature_extraction
import sklearn.neighbors
from ._cache import cache
from . import util
from .filters import diagonal_filter
from .util.exceptions import ParameterError
from typing import Any, Callable, Optional, TypeVar, Union, overload
from typing_extensions import Literal
from ._typing import _WindowSpec, _FloatLike_co
__all__ = [
"cross_similarity",
"recurrence_matrix",
"recurrence_to_lag",
"lag_to_recurrence",
"timelag_filter",
"agglomerative",
"subsegment",
"path_enhance",
]
@overload
def cross_similarity(
data: np.ndarray,
data_ref: np.ndarray,
*,
k: Optional[int] = ...,
metric: str = ...,
sparse: Literal[False] = ...,
mode: str = ...,
bandwidth: Optional[Union[np.ndarray, _FloatLike_co, str]] = None,
full: bool = False,
) -> np.ndarray:
...
@overload
def cross_similarity(
data: np.ndarray,
data_ref: np.ndarray,
*,
k: Optional[int] = ...,
metric: str = ...,
sparse: Literal[True] = ...,
mode: str = ...,
bandwidth: Optional[Union[np.ndarray, _FloatLike_co, str]] = None,
full: bool = False,
) -> scipy.sparse.csc_matrix:
...
@cache(level=30)
def cross_similarity(
data: np.ndarray,
data_ref: np.ndarray,
*,
k: Optional[int] = None,
metric: str = "euclidean",
sparse: bool = False,
mode: str = "connectivity",
bandwidth: Optional[Union[np.ndarray, _FloatLike_co, str]] = None,
full: bool = False,
) -> Union[np.ndarray, scipy.sparse.csc_matrix]:
"""Compute cross-similarity from one data sequence to a reference sequence.
The output is a matrix ``xsim``, where ``xsim[i, j]`` is non-zero
if ``data_ref[..., i]`` is a k-nearest neighbor of ``data[..., j]``.
Parameters
----------
data : np.ndarray [shape=(..., d, n)]
A feature matrix for the comparison sequence.
If the data has more than two dimensions (e.g., for multi-channel inputs),
the leading dimensions are flattened prior to comparison.
For example, a stereo input with shape `(2, d, n)` is
automatically reshaped to `(2 * d, n)`.
data_ref : np.ndarray [shape=(..., d, n_ref)]
A feature matrix for the reference sequence
If the data has more than two dimensions (e.g., for multi-channel inputs),
the leading dimensions are flattened prior to comparison.
For example, a stereo input with shape `(2, d, n_ref)` is
automatically reshaped to `(2 * d, n_ref)`.
k : int > 0 [scalar] or None
the number of nearest-neighbors for each sample
Default: ``k = 2 * ceil(sqrt(n_ref))``,
or ``k = 2`` if ``n_ref <= 3``
metric : str
Distance metric to use for nearest-neighbor calculation.
See `sklearn.neighbors.NearestNeighbors` for details.
sparse : bool [scalar]
if False, returns a dense type (ndarray)
if True, returns a sparse type (scipy.sparse.csc_matrix)
mode : str, {'connectivity', 'distance', 'affinity'}
If 'connectivity', a binary connectivity matrix is produced.
If 'distance', then a non-zero entry contains the distance between
points.
If 'affinity', then non-zero entries are mapped to
``exp( - distance(i, j) / bandwidth)`` where ``bandwidth`` is
as specified below.
bandwidth : None, float > 0, ndarray, or str
str options include ``{'med_k_scalar', 'mean_k', 'gmean_k', 'mean_k_avg', 'gmean_k_avg', 'mean_k_avg_and_pair'}``
If ndarray is supplied, use ndarray as bandwidth for each i,j pair.
If using ``mode='affinity'``, this can be used to set the
bandwidth on the affinity kernel.
If no value is provided or ``None``, default to ``'med_k_scalar'``.
If ``bandwidth='med_k_scalar'``, bandwidth is set automatically to the median
distance to the k'th nearest neighbor of each ``data[:, i]``.
If ``bandwidth='mean_k'``, bandwidth is estimated for each sample-pair (i, j) by taking the
arithmetic mean between distances to the k-th nearest neighbor for sample i and sample j.
If ``bandwidth='gmean_k'``, bandwidth is estimated for each sample-pair (i, j) by taking the
geometric mean between distances to the k-th nearest neighbor for sample i and j [#z]_.
If ``bandwidth='mean_k_avg'``, bandwidth is estimated for each sample-pair (i, j) by taking the
arithmetic mean between the average distances to the first k-th nearest neighbors for
sample i and sample j.
This is similar to the approach in Wang et al. (2014) [#w]_ but does not include the distance
between i and j.
If ``bandwidth='gmean_k_avg'``, bandwidth is estimated for each sample-pair (i, j) by taking the
geometric mean between the average distances to the first k-th nearest neighbors for
sample i and sample j.
If ``bandwidth='mean_k_avg_and_pair'``, bandwidth is estimated for each sample-pair (i, j) by
taking the arithmetic mean between three terms: the average distances to the first
k-th nearest neighbors for sample i and sample j respectively, as well as
the distance between i and j.
This is similar to the approach in Wang et al. (2014). [#w]_
.. [#z] Zelnik-Manor, Lihi, and Pietro Perona. (2004).
"Self-tuning spectral clustering." Advances in neural information processing systems 17.
.. [#w] Wang, Bo, et al. (2014).
"Similarity network fusion for aggregating data types on a genomic scale." Nat Methods 11, 333337.
https://doi.org/10.1038/nmeth.2810
full : bool
If using ``mode ='affinity'`` or ``mode='distance'``, this option can be used to compute
the full affinity or distance matrix as opposed a sparse matrix with only none-zero terms
for the first k-neighbors of each sample.
This option has no effect when using ``mode='connectivity'``.
When using ``mode='distance'``, setting ``full=True`` will ignore ``k`` and ``width``.
When using ``mode='affinity'``, setting ``full=True`` will use ``k`` exclusively for
bandwidth estimation, and ignore ``width``.
Returns
-------
xsim : np.ndarray or scipy.sparse.csc_matrix, [shape=(n_ref, n)]
Cross-similarity matrix
See Also
--------
recurrence_matrix
recurrence_to_lag
librosa.feature.stack_memory
sklearn.neighbors.NearestNeighbors
scipy.spatial.distance.cdist
Notes
-----
This function caches at level 30.
Examples
--------
Find nearest neighbors in CQT space between two sequences
>>> hop_length = 1024
>>> y_ref, sr = librosa.load(librosa.ex('pistachio'))
>>> y_comp, sr = librosa.load(librosa.ex('pistachio'), offset=10)
>>> chroma_ref = librosa.feature.chroma_cqt(y=y_ref, sr=sr, hop_length=hop_length)
>>> chroma_comp = librosa.feature.chroma_cqt(y=y_comp, sr=sr, hop_length=hop_length)
>>> # Use time-delay embedding to get a cleaner recurrence matrix
>>> x_ref = librosa.feature.stack_memory(chroma_ref, n_steps=10, delay=3)
>>> x_comp = librosa.feature.stack_memory(chroma_comp, n_steps=10, delay=3)
>>> xsim = librosa.segment.cross_similarity(x_comp, x_ref)
Or fix the number of nearest neighbors to 5
>>> xsim = librosa.segment.cross_similarity(x_comp, x_ref, k=5)
Use cosine similarity instead of Euclidean distance
>>> xsim = librosa.segment.cross_similarity(x_comp, x_ref, metric='cosine')
Use an affinity matrix instead of binary connectivity
>>> xsim_aff = librosa.segment.cross_similarity(x_comp, x_ref, metric='cosine', mode='affinity')
Plot the feature and recurrence matrices
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
>>> imgsim = librosa.display.specshow(xsim, x_axis='s', y_axis='s',
... hop_length=hop_length, ax=ax[0])
>>> ax[0].set(title='Binary cross-similarity (symmetric)')
>>> imgaff = librosa.display.specshow(xsim_aff, x_axis='s', y_axis='s',
... cmap='magma_r', hop_length=hop_length, ax=ax[1])
>>> ax[1].set(title='Cross-affinity')
>>> ax[1].label_outer()
>>> fig.colorbar(imgsim, ax=ax[0], orientation='horizontal', ticks=[0, 1])
>>> fig.colorbar(imgaff, ax=ax[1], orientation='horizontal')
"""
data_ref = np.atleast_2d(data_ref)
data = np.atleast_2d(data)
if not np.allclose(data_ref.shape[:-1], data.shape[:-1]):
raise ParameterError(
f"data_ref.shape={data_ref.shape} and data.shape={data.shape} do not match on leading dimension(s)"
)
# swap data axes so the feature axis is last
data_ref = np.swapaxes(data_ref, -1, 0)
n_ref = data_ref.shape[0]
# Use F-ordering for reshape to preserve leading axis
data_ref = data_ref.reshape((n_ref, -1), order="F")
data = np.swapaxes(data, -1, 0)
n = data.shape[0]
data = data.reshape((n, -1), order="F")
if mode not in ["connectivity", "distance", "affinity"]:
raise ParameterError(
(
f"Invalid mode='{mode}'. Must be one of "
"['connectivity', 'distance', 'affinity']"
)
)
if k is None:
k = min(n_ref, 2 * np.ceil(np.sqrt(n_ref)))
k = int(k)
# using k for bandwidth estimation also and decouple k for full mode
bandwidth_k = k
if full and (mode != "connectivity"):
k = n
# Build the neighbor search object
# `auto` mode does not work with some choices of metric. Rather than special-case
# those here, we instead use a fall-back to brute force if auto fails.
try:
knn = sklearn.neighbors.NearestNeighbors(
n_neighbors=min(n_ref, k), metric=metric, algorithm="auto"
)
except ValueError:
knn = sklearn.neighbors.NearestNeighbors(
n_neighbors=min(n_ref, k), metric=metric, algorithm="brute"
)
knn.fit(data_ref)
# Get the knn graph
if mode == "affinity":
# sklearn's nearest neighbor doesn't support affinity,
# so we use distance here and then do the conversion post-hoc
kng_mode = "distance"
else:
kng_mode = mode
xsim = knn.kneighbors_graph(X=data, mode=kng_mode).tolil()
if not full:
# Retain only the top-k links per point
for i in range(n):
# Get the links from point i
links = xsim[i].nonzero()[1]
# Order them ascending
idx = links[np.argsort(xsim[i, links].toarray())][0]
# Everything past the kth closest gets squashed
xsim[i, idx[k:]] = 0
# Convert a compressed sparse row (CSR) format
xsim = xsim.tocsr()
xsim.eliminate_zeros()
if mode == "connectivity":
xsim = xsim.astype(bool)
elif mode == "affinity":
aff_bandwidth = __affinity_bandwidth(xsim, bandwidth, bandwidth_k)
xsim.data[:] = np.exp(xsim.data / (-1 * aff_bandwidth))
# Transpose to n_ref by n
xsim = xsim.T
if not sparse:
xsim = xsim.toarray()
return xsim
@overload
def recurrence_matrix(
data: np.ndarray,
*,
k: Optional[int] = ...,
width: int = ...,
metric: str = ...,
sym: bool = ...,
sparse: Literal[True] = ...,
mode: str = ...,
bandwidth: Optional[Union[np.ndarray, _FloatLike_co, str]] = ...,
self: bool = ...,
axis: int = ...,
full: bool = False,
) -> scipy.sparse.csc_matrix:
...
@overload
def recurrence_matrix(
data: np.ndarray,
*,
k: Optional[int] = ...,
width: int = ...,
metric: str = ...,
sym: bool = ...,
sparse: Literal[False] = ...,
mode: str = ...,
bandwidth: Optional[Union[np.ndarray, _FloatLike_co, str]] = ...,
self: bool = ...,
axis: int = ...,
full: bool = False,
) -> np.ndarray:
...
@cache(level=30)
def recurrence_matrix(
data: np.ndarray,
*,
k: Optional[int] = None,
width: int = 1,
metric: str = "euclidean",
sym: bool = False,
sparse: bool = False,
mode: str = "connectivity",
bandwidth: Optional[Union[np.ndarray, _FloatLike_co, str]] = None,
self: bool = False,
axis: int = -1,
full: bool = False,
) -> Union[np.ndarray, scipy.sparse.csc_matrix]:
"""Compute a recurrence matrix from a data matrix.
``rec[i, j]`` is non-zero if ``data[..., i]`` is a k-nearest neighbor
of ``data[..., j]`` and ``|i - j| >= width``
The specific value of ``rec[i, j]`` can have several forms, governed
by the ``mode`` parameter below:
- Connectivity: ``rec[i, j] = 1 or 0`` indicates that frames ``i`` and ``j`` are repetitions
- Affinity: ``rec[i, j] > 0`` measures how similar frames ``i`` and ``j`` are. This is also
known as a (sparse) self-similarity matrix.
- Distance: ``rec[i, j] > 0`` measures how distant frames ``i`` and ``j`` are. This is also
known as a (sparse) self-distance matrix.
The general term *recurrence matrix* can refer to any of the three forms above.
Parameters
----------
data : np.ndarray [shape=(..., d, n)]
A feature matrix.
If the data has more than two dimensions (e.g., for multi-channel inputs),
the leading dimensions are flattened prior to comparison.
For example, a stereo input with shape `(2, d, n)` is
automatically reshaped to `(2 * d, n)`.
k : int > 0 [scalar] or None
the number of nearest-neighbors for each sample
Default: ``k = 2 * ceil(sqrt(t - 2 * width + 1))``,
or ``k = 2`` if ``t <= 2 * width + 1``
width : int >= 1 [scalar]
only link neighbors ``(data[..., i], data[..., j])``
if ``|i - j| >= width``
``width`` cannot exceed the length of the data.
metric : str
Distance metric to use for nearest-neighbor calculation.
See `sklearn.neighbors.NearestNeighbors` for details.
sym : bool [scalar]
set ``sym=True`` to only link mutual nearest-neighbors
sparse : bool [scalar]
if False, returns a dense type (ndarray)
if True, returns a sparse type (scipy.sparse.csc_matrix)
mode : str, {'connectivity', 'distance', 'affinity'}
If 'connectivity', a binary connectivity matrix is produced.
If 'distance', then a non-zero entry contains the distance between
points.
If 'affinity', then non-zero entries are mapped to
``exp( - distance(i, j) / bandwidth)`` where ``bandwidth`` is
as specified below.
bandwidth : None, float > 0, ndarray, or str
str options include ``{'med_k_scalar', 'mean_k', 'gmean_k', 'mean_k_avg', 'gmean_k_avg', 'mean_k_avg_and_pair'}``
If ndarray is supplied, use ndarray as bandwidth for each i,j pair.
If using ``mode='affinity'``, the ``bandwidth`` option can be used to set the
bandwidth on the affinity kernel.
If no value is provided or ``None``, default to ``'med_k_scalar'``.
If ``bandwidth='med_k_scalar'``, a scalar bandwidth is set to the median distance
of the k-th nearest neighbor for all samples.
If ``bandwidth='mean_k'``, bandwidth is estimated for each sample-pair (i, j) by taking the
arithmetic mean between distances to the k-th nearest neighbor for sample i and sample j.
If ``bandwidth='gmean_k'``, bandwidth is estimated for each sample-pair (i, j) by taking the
geometric mean between distances to the k-th nearest neighbor for sample i and j [#z]_.
If ``bandwidth='mean_k_avg'``, bandwidth is estimated for each sample-pair (i, j) by taking the
arithmetic mean between the average distances to the first k-th nearest neighbors for
sample i and sample j.
This is similar to the approach in Wang et al. (2014) [#w]_ but does not include the distance
between i and j.
If ``bandwidth='gmean_k_avg'``, bandwidth is estimated for each sample-pair (i, j) by taking the
geometric mean between the average distances to the first k-th nearest neighbors for
sample i and sample j.
If ``bandwidth='mean_k_avg_and_pair'``, bandwidth is estimated for each sample-pair (i, j) by
taking the arithmetic mean between three terms: the average distances to the first
k-th nearest neighbors for sample i and sample j respectively, as well as
the distance between i and j.
This is similar to the approach in Wang et al. (2014). [#w]_
.. [#z] Zelnik-Manor, Lihi, and Pietro Perona. (2004).
"Self-tuning spectral clustering." Advances in neural information processing systems 17.
.. [#w] Wang, Bo, et al. (2014).
"Similarity network fusion for aggregating data types on a genomic scale." Nat Methods 11, 333337.
https://doi.org/10.1038/nmeth.2810
self : bool
If ``True``, then the main diagonal is populated with self-links:
0 if ``mode='distance'``, and 1 otherwise.
If ``False``, the main diagonal is left empty.
axis : int
The axis along which to compute recurrence.
By default, the last index (-1) is taken.
full : bool
If using ``mode ='affinity'`` or ``mode='distance'``, this option can be used to compute
the full affinity or distance matrix as opposed a sparse matrix with only none-zero terms
for the first k-neighbors of each sample.
This option has no effect when using ``mode='connectivity'``.
When using ``mode='distance'``, setting ``full=True`` will ignore ``k`` and ``width``.
When using ``mode='affinity'``, setting ``full=True`` will use ``k`` exclusively for
bandwidth estimation, and ignore ``width``.
Returns
-------
rec : np.ndarray or scipy.sparse.csc_matrix, [shape=(t, t)]
Recurrence matrix
See Also
--------
sklearn.neighbors.NearestNeighbors
scipy.spatial.distance.cdist
librosa.feature.stack_memory
recurrence_to_lag
Notes
-----
This function caches at level 30.
Examples
--------
Find nearest neighbors in CQT space
>>> y, sr = librosa.load(librosa.ex('nutcracker'))
>>> hop_length = 1024
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
>>> # Use time-delay embedding to get a cleaner recurrence matrix
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
>>> R = librosa.segment.recurrence_matrix(chroma_stack)
Or fix the number of nearest neighbors to 5
>>> R = librosa.segment.recurrence_matrix(chroma_stack, k=5)
Suppress neighbors within +- 7 frames
>>> R = librosa.segment.recurrence_matrix(chroma_stack, width=7)
Use cosine similarity instead of Euclidean distance
>>> R = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine')
Require mutual nearest neighbors
>>> R = librosa.segment.recurrence_matrix(chroma_stack, sym=True)
Use an affinity matrix instead of binary connectivity
>>> R_aff = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine',
... mode='affinity')
Plot the feature and recurrence matrices
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
>>> imgsim = librosa.display.specshow(R, x_axis='s', y_axis='s',
... hop_length=hop_length, ax=ax[0])
>>> ax[0].set(title='Binary recurrence (symmetric)')
>>> imgaff = librosa.display.specshow(R_aff, x_axis='s', y_axis='s',
... hop_length=hop_length, cmap='magma_r', ax=ax[1])
>>> ax[1].set(title='Affinity recurrence')
>>> ax[1].label_outer()
>>> fig.colorbar(imgsim, ax=ax[0], orientation='horizontal', ticks=[0, 1])
>>> fig.colorbar(imgaff, ax=ax[1], orientation='horizontal')
"""
data = np.atleast_2d(data)
# Swap observations to the first dimension and flatten the rest
data = np.swapaxes(data, axis, 0)
t = data.shape[0]
# Use F-ordering here to preserve leading axis layout
data = data.reshape((t, -1), order="F")
if width < 1 or width >= (t - 1) // 2:
raise ParameterError(
"width={} must be at least 1 and at most (data.shape[{}] - 1) // 2={}".format(
width, axis, (t - 1) // 2
)
)
if mode not in ["connectivity", "distance", "affinity"]:
raise ParameterError(
(
f"Invalid mode='{mode}'. Must be one of "
"['connectivity', 'distance', 'affinity']"
)
)
if k is None:
k = 2 * np.ceil(np.sqrt(t - 2 * width + 1))
k = int(k)
# using k for bandwidth estimation also and decouple k for full mode
bandwidth_k = k
if full and (mode != "connectivity"):
k = t
# Build the neighbor search object
try:
knn = sklearn.neighbors.NearestNeighbors(
n_neighbors=min(t - 1, k + 2 * width), metric=metric, algorithm="auto"
)
except ValueError:
knn = sklearn.neighbors.NearestNeighbors(
n_neighbors=min(t - 1, k + 2 * width), metric=metric, algorithm="brute"
)
knn.fit(data)
# Get the knn graph
if mode == "affinity":
kng_mode = "distance"
else:
kng_mode = mode
rec = knn.kneighbors_graph(mode=kng_mode).tolil()
if not full:
# Remove connections within width
for diag in range(-width + 1, width):
rec.setdiag(0, diag)
# Retain only the top-k links per point
for i in range(t):
# Get the links from point i
links = rec[i].nonzero()[1]
# Order them ascending
idx = links[np.argsort(rec[i, links].toarray())][0]
# Everything past the kth closest gets squashed
rec[i, idx[k:]] = 0
if self:
if mode == "connectivity":
rec.setdiag(1)
elif mode == "affinity":
# we need to keep the self-loop in here, but not mess up the
# bandwidth estimation
#
# using negative distances here preserves the structure without changing
# the statistics of the data
rec.setdiag(-1)
else:
rec.setdiag(0)
# symmetrize
if sym:
# Note: this operation produces a CSR (compressed sparse row) matrix!
# This is why we have to do it after filling the diagonal in self-mode
rec = rec.minimum(rec.T)
rec = rec.tocsr()
rec.eliminate_zeros()
if mode == "connectivity":
rec = rec.astype(bool)
elif mode == "affinity":
# Set all the negatives back to 0
# Negatives are temporarily inserted above to preserve the sparsity structure
# of the matrix without corrupting the bandwidth calculations
rec.data[rec.data < 0] = 0.0
aff_bandwidth = __affinity_bandwidth(rec, bandwidth, bandwidth_k)
rec.data[:] = np.exp(rec.data / (-1 * aff_bandwidth))
# Transpose to be column-major
rec = rec.T
if not sparse:
rec = rec.toarray()
return rec
_ArrayOrSparseMatrix = TypeVar(
"_ArrayOrSparseMatrix", bound=Union[np.ndarray, scipy.sparse.spmatrix]
)
def recurrence_to_lag(
rec: _ArrayOrSparseMatrix, *, pad: bool = True, axis: int = -1
) -> _ArrayOrSparseMatrix:
"""Convert a recurrence matrix into a lag matrix.
``lag[i, j] == rec[i+j, j]``
This transformation turns diagonal structures in the recurrence matrix
into horizontal structures in the lag matrix.
These horizontal structures can be used to infer changes in the repetition
structure of a piece, e.g., the beginning of a new section as done in [#]_.
.. [#] Serra, J., Müller, M., Grosche, P., & Arcos, J. L. (2014).
Unsupervised music structure annotation by time series structure
features and segment similarity.
IEEE Transactions on Multimedia, 16(5), 1229-1240.
Parameters
----------
rec : np.ndarray, or scipy.sparse.spmatrix [shape=(n, n)]
A (binary) recurrence matrix, as returned by `recurrence_matrix`
pad : bool
If False, ``lag`` matrix is square, which is equivalent to
assuming that the signal repeats itself indefinitely.
If True, ``lag`` is padded with ``n`` zeros, which eliminates
the assumption of repetition.
axis : int
The axis to keep as the ``time`` axis.
The alternate axis will be converted to lag coordinates.
Returns
-------
lag : np.ndarray
The recurrence matrix in (lag, time) (if ``axis=1``)
or (time, lag) (if ``axis=0``) coordinates
Raises
------
ParameterError : if ``rec`` is non-square
See Also
--------
recurrence_matrix
lag_to_recurrence
util.shear
Examples
--------
>>> y, sr = librosa.load(librosa.ex('nutcracker'))
>>> hop_length = 1024
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
>>> recurrence = librosa.segment.recurrence_matrix(chroma_stack)
>>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True)
>>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, sharex=True)
>>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag',
... hop_length=hop_length, ax=ax[0])
>>> ax[0].set(title='Lag (zero-padded)')
>>> ax[0].label_outer()
>>> librosa.display.specshow(lag_nopad, x_axis='time', y_axis='lag',
... hop_length=hop_length, ax=ax[1])
>>> ax[1].set(title='Lag (no padding)')
"""
axis = np.abs(axis)
if rec.ndim != 2 or rec.shape[0] != rec.shape[1]:
raise ParameterError(f"non-square recurrence matrix shape: {rec.shape}")
sparse = scipy.sparse.issparse(rec)
if sparse:
# suppress type check here, mypy doesn't know about issparse
fmt = rec.format # type: ignore
t = rec.shape[axis]
if pad:
if sparse:
padding = np.asarray([[1, 0]], dtype=rec.dtype).swapaxes(axis, 0)
if axis == 0:
rec_fmt = "csr"
else:
rec_fmt = "csc"
rec = scipy.sparse.kron(padding, rec, format=rec_fmt)
else:
padding = np.array([(0, 0), (0, 0)])
padding[(1 - axis), :] = [0, t]
# Suppress type check, mypy doesn't know that rec is an ndarray here
rec = np.pad(rec, padding, mode="constant") # type: ignore
lag: _ArrayOrSparseMatrix = util.shear(rec, factor=-1, axis=axis)
if sparse:
# Suppress type check, mypy doesn't know
# that lag is sparse here
lag = lag.asformat(fmt) # type: ignore
return lag
def lag_to_recurrence(
lag: _ArrayOrSparseMatrix, *, axis: int = -1
) -> _ArrayOrSparseMatrix:
"""Convert a lag matrix into a recurrence matrix.
Parameters
----------
lag : np.ndarray or scipy.sparse.spmatrix
A lag matrix, as produced by ``recurrence_to_lag``
axis : int
The axis corresponding to the time dimension.
The alternate axis will be interpreted in lag coordinates.
Returns
-------
rec : np.ndarray or scipy.sparse.spmatrix [shape=(n, n)]
A recurrence matrix in (time, time) coordinates
For sparse matrices, format will match that of ``lag``.
Raises
------
ParameterError : if ``lag`` does not have the correct shape
See Also
--------
recurrence_to_lag
Examples
--------
>>> y, sr = librosa.load(librosa.ex('nutcracker'))
>>> hop_length = 1024
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
>>> recurrence = librosa.segment.recurrence_matrix(chroma_stack)
>>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True)
>>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False)
>>> rec_pad = librosa.segment.lag_to_recurrence(lag_pad)
>>> rec_nopad = librosa.segment.lag_to_recurrence(lag_nopad)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True)
>>> librosa.display.specshow(lag_pad, x_axis='s', y_axis='lag',
... hop_length=hop_length, ax=ax[0, 0])
>>> ax[0, 0].set(title='Lag (zero-padded)')
>>> ax[0, 0].label_outer()
>>> librosa.display.specshow(lag_nopad, x_axis='s', y_axis='time',
... hop_length=hop_length, ax=ax[0, 1])
>>> ax[0, 1].set(title='Lag (no padding)')
>>> ax[0, 1].label_outer()
>>> librosa.display.specshow(rec_pad, x_axis='s', y_axis='time',
... hop_length=hop_length, ax=ax[1, 0])
>>> ax[1, 0].set(title='Recurrence (with padding)')
>>> librosa.display.specshow(rec_nopad, x_axis='s', y_axis='time',
... hop_length=hop_length, ax=ax[1, 1])
>>> ax[1, 1].set(title='Recurrence (without padding)')
>>> ax[1, 1].label_outer()
"""
if axis not in [0, 1, -1]:
raise ParameterError(f"Invalid target axis: {axis}")
axis = np.abs(axis)
if lag.ndim != 2 or (
lag.shape[0] != lag.shape[1] and lag.shape[1 - axis] != 2 * lag.shape[axis]
):
raise ParameterError(f"Invalid lag matrix shape: {lag.shape}")
# Since lag must be 2-dimensional, abs(axis) = axis
t = lag.shape[axis]
rec = util.shear(lag, factor=+1, axis=axis)
sub_slice = [slice(None)] * rec.ndim
sub_slice[1 - axis] = slice(t)
rec_slice: _ArrayOrSparseMatrix = rec[tuple(sub_slice)]
return rec_slice
_F = TypeVar("_F", bound=Callable[..., Any])
def timelag_filter(function: _F, pad: bool = True, index: int = 0) -> _F:
"""Apply a filter in the time-lag domain.
This is primarily useful for adapting image filters to operate on
`recurrence_to_lag` output.
Using `timelag_filter` is equivalent to the following sequence of
operations:
>>> data_tl = librosa.segment.recurrence_to_lag(data)
>>> data_filtered_tl = function(data_tl)
>>> data_filtered = librosa.segment.lag_to_recurrence(data_filtered_tl)
Parameters
----------
function : callable
The filtering function to wrap, e.g., `scipy.ndimage.median_filter`
pad : bool
Whether to zero-pad the structure feature matrix
index : int >= 0
If ``function`` accepts input data as a positional argument, it should be
indexed by ``index``
Returns
-------
wrapped_function : callable
A new filter function which applies in time-lag space rather than
time-time space.
Examples
--------
Apply a 31-bin median filter to the diagonal of a recurrence matrix.
With default, parameters, this corresponds to a time window of about
0.72 seconds.
>>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=30)
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=3, delay=3)
>>> rec = librosa.segment.recurrence_matrix(chroma_stack)
>>> from scipy.ndimage import median_filter
>>> diagonal_median = librosa.segment.timelag_filter(median_filter)
>>> rec_filtered = diagonal_median(rec, size=(1, 31), mode='mirror')
Or with affinity weights
>>> rec_aff = librosa.segment.recurrence_matrix(chroma_stack, mode='affinity')
>>> rec_aff_fil = diagonal_median(rec_aff, size=(1, 31), mode='mirror')
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
>>> librosa.display.specshow(rec, y_axis='s', x_axis='s', ax=ax[0, 0])
>>> ax[0, 0].set(title='Raw recurrence matrix')
>>> ax[0, 0].label_outer()
>>> librosa.display.specshow(rec_filtered, y_axis='s', x_axis='s', ax=ax[0, 1])
>>> ax[0, 1].set(title='Filtered recurrence matrix')
>>> ax[0, 1].label_outer()
>>> librosa.display.specshow(rec_aff, x_axis='s', y_axis='s',
... cmap='magma_r', ax=ax[1, 0])
>>> ax[1, 0].set(title='Raw affinity matrix')
>>> librosa.display.specshow(rec_aff_fil, x_axis='s', y_axis='s',
... cmap='magma_r', ax=ax[1, 1])
>>> ax[1, 1].set(title='Filtered affinity matrix')
>>> ax[1, 1].label_outer()
"""
def __my_filter(wrapped_f, *args, **kwargs):
"""Wrap the filter with lag conversions"""
# Map the input data into time-lag space
args = list(args)
args[index] = recurrence_to_lag(args[index], pad=pad)
# Apply the filtering function
result = wrapped_f(*args, **kwargs)
# Map back into time-time and return
return lag_to_recurrence(result)
return decorator(__my_filter, function) # type: ignore
@cache(level=30)
def subsegment(
data: np.ndarray, frames: np.ndarray, *, n_segments: int = 4, axis: int = -1
) -> np.ndarray:
"""Sub-divide a segmentation by feature clustering.
Given a set of frame boundaries (``frames``), and a data matrix (``data``),
each successive interval defined by ``frames`` is partitioned into
``n_segments`` by constrained agglomerative clustering.
.. note::
If an interval spans fewer than ``n_segments`` frames, then each
frame becomes a sub-segment.
Parameters
----------
data : np.ndarray
Data matrix to use in clustering
frames : np.ndarray [shape=(n_boundaries,)], dtype=int, non-negative]
Array of beat or segment boundaries, as provided by
`librosa.beat.beat_track`,
`librosa.onset.onset_detect`,
or `agglomerative`.
n_segments : int > 0
Maximum number of frames to sub-divide each interval.
axis : int
Axis along which to apply the segmentation.
By default, the last index (-1) is taken.
Returns
-------
boundaries : np.ndarray [shape=(n_subboundaries,)]
List of sub-divided segment boundaries
See Also
--------
agglomerative : Temporal segmentation
librosa.onset.onset_detect : Onset detection
librosa.beat.beat_track : Beat tracking
Notes
-----
This function caches at level 30.
Examples
--------
Load audio, detect beat frames, and subdivide in twos by CQT
>>> y, sr = librosa.load(librosa.ex('choice'), duration=10)
>>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512)
>>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512)
>>> cqt = np.abs(librosa.cqt(y, sr=sr, hop_length=512))
>>> subseg = librosa.segment.subsegment(cqt, beats, n_segments=2)
>>> subseg_t = librosa.frames_to_time(subseg, sr=sr, hop_length=512)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> librosa.display.specshow(librosa.amplitude_to_db(cqt,
... ref=np.max),
... y_axis='cqt_hz', x_axis='time', ax=ax)
>>> lims = ax.get_ylim()
>>> ax.vlines(beat_times, lims[0], lims[1], color='lime', alpha=0.9,
... linewidth=2, label='Beats')
>>> ax.vlines(subseg_t, lims[0], lims[1], color='linen', linestyle='--',
... linewidth=1.5, alpha=0.5, label='Sub-beats')
>>> ax.legend()
>>> ax.set(title='CQT + Beat and sub-beat markers')
"""
frames = util.fix_frames(frames, x_min=0, x_max=data.shape[axis], pad=True)
if n_segments < 1:
raise ParameterError("n_segments must be a positive integer")
boundaries = []
idx_slices = [slice(None)] * data.ndim
for seg_start, seg_end in zip(frames[:-1], frames[1:]):
idx_slices[axis] = slice(seg_start, seg_end)
boundaries.extend(
seg_start
+ agglomerative(
data[tuple(idx_slices)], min(seg_end - seg_start, n_segments), axis=axis
)
)
return np.array(boundaries)
def agglomerative(
data: np.ndarray,
k: int,
*,
clusterer: Optional[sklearn.cluster.AgglomerativeClustering] = None,
axis: int = -1,
) -> np.ndarray:
"""Bottom-up temporal segmentation.
Use a temporally-constrained agglomerative clustering routine to partition
``data`` into ``k`` contiguous segments.
Parameters
----------
data : np.ndarray
data to cluster
k : int > 0 [scalar]
number of segments to produce
clusterer : sklearn.cluster.AgglomerativeClustering, optional
An optional AgglomerativeClustering object.
If `None`, a constrained Ward object is instantiated.
axis : int
axis along which to cluster.
By default, the last axis (-1) is chosen.
Returns
-------
boundaries : np.ndarray [shape=(k,)]
left-boundaries (frame numbers) of detected segments. This
will always include `0` as the first left-boundary.
See Also
--------
sklearn.cluster.AgglomerativeClustering
Examples
--------
Cluster by chroma similarity, break into 20 segments
>>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
>>> bounds = librosa.segment.agglomerative(chroma, 20)
>>> bound_times = librosa.frames_to_time(bounds, sr=sr)
>>> bound_times
array([ 0. , 0.65 , 1.091, 1.927, 2.438, 2.902, 3.924,
4.783, 5.294, 5.712, 6.13 , 7.314, 8.522, 8.916,
9.66 , 10.844, 11.238, 12.028, 12.492, 14.095])
Plot the segmentation over the chromagram
>>> import matplotlib.pyplot as plt
>>> import matplotlib.transforms as mpt
>>> fig, ax = plt.subplots()
>>> trans = mpt.blended_transform_factory(
... ax.transData, ax.transAxes)
>>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax)
>>> ax.vlines(bound_times, 0, 1, color='linen', linestyle='--',
... linewidth=2, alpha=0.9, label='Segment boundaries',
... transform=trans)
>>> ax.legend()
>>> ax.set(title='Power spectrogram')
"""
# Make sure we have at least two dimensions
data = np.atleast_2d(data)
# Swap data index to position 0
data = np.swapaxes(data, axis, 0)
# Flatten the features
n = data.shape[0]
data = data.reshape((n, -1), order="F")
if clusterer is None:
# Connect the temporal connectivity graph
grid = sklearn.feature_extraction.image.grid_to_graph(n_x=n, n_y=1, n_z=1)
# Instantiate the clustering object
clusterer = sklearn.cluster.AgglomerativeClustering(
n_clusters=k, connectivity=grid, memory=cache.memory
)
# Fit the model
clusterer.fit(data)
# Find the change points from the labels
boundaries = [0]
boundaries.extend(list(1 + np.nonzero(np.diff(clusterer.labels_))[0].astype(int)))
return np.asarray(boundaries)
def path_enhance(
R: np.ndarray,
n: int,
*,
window: _WindowSpec = "hann",
max_ratio: float = 2.0,
min_ratio: Optional[float] = None,
n_filters: int = 7,
zero_mean: bool = False,
clip: bool = True,
**kwargs: Any,
) -> np.ndarray:
"""Multi-angle path enhancement for self- and cross-similarity matrices.
This function convolves multiple diagonal smoothing filters with a self-similarity (or
recurrence) matrix R, and aggregates the result by an element-wise maximum.
Technically, the output is a matrix R_smooth such that::
R_smooth[i, j] = max_theta (R * filter_theta)[i, j]
where `*` denotes 2-dimensional convolution, and ``filter_theta`` is a smoothing filter at
orientation theta.
This is intended to provide coherent temporal smoothing of self-similarity matrices
when there are changes in tempo.
Smoothing filters are generated at evenly spaced orientations between min_ratio and
max_ratio.
This function is inspired by the multi-angle path enhancement of [#]_, but differs by
modeling tempo differences in the space of similarity matrices rather than re-sampling
the underlying features prior to generating the self-similarity matrix.
.. [#] Müller, Meinard and Frank Kurth.
"Enhancing similarity matrices for music audio analysis."
2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
Vol. 5. IEEE, 2006.
.. note:: if using recurrence_matrix to construct the input similarity matrix, be sure to include the main
diagonal by setting ``self=True``. Otherwise, the diagonal will be suppressed, and this is likely to
produce discontinuities which will pollute the smoothing filter response.
Parameters
----------
R : np.ndarray
The self- or cross-similarity matrix to be smoothed.
Note: sparse inputs are not supported.
If the recurrence matrix is multi-dimensional, e.g. `shape=(c, n, n)`,
then enhancement is conducted independently for each leading channel.
n : int > 0
The length of the smoothing filter
window : window specification
The type of smoothing filter to use. See `filters.get_window` for more information
on window specification formats.
max_ratio : float > 0
The maximum tempo ratio to support
min_ratio : float > 0
The minimum tempo ratio to support.
If not provided, it will default to ``1/max_ratio``
n_filters : int >= 1
The number of different smoothing filters to use, evenly spaced
between ``min_ratio`` and ``max_ratio``.
If ``min_ratio = 1/max_ratio`` (the default), using an odd number
of filters will ensure that the main diagonal (ratio=1) is included.
zero_mean : bool
By default, the smoothing filters are non-negative and sum to one (i.e. are averaging
filters).
If ``zero_mean=True``, then the smoothing filters are made to sum to zero by subtracting
a constant value from the non-diagonal coordinates of the filter. This is primarily
useful for suppressing blocks while enhancing diagonals.
clip : bool
If True, the smoothed similarity matrix will be thresholded at 0, and will not contain
negative entries.
**kwargs : additional keyword arguments
Additional arguments to pass to `scipy.ndimage.convolve`
Returns
-------
R_smooth : np.ndarray, shape=R.shape
The smoothed self- or cross-similarity matrix
See Also
--------
librosa.filters.diagonal_filter
recurrence_matrix
Examples
--------
Use a 51-frame diagonal smoothing filter to enhance paths in a recurrence matrix
>>> y, sr = librosa.load(librosa.ex('nutcracker'))
>>> hop_length = 2048
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
>>> rec = librosa.segment.recurrence_matrix(chroma_stack, mode='affinity', self=True)
>>> rec_smooth = librosa.segment.path_enhance(rec, 51, window='hann', n_filters=7)
Plot the recurrence matrix before and after smoothing
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
>>> img = librosa.display.specshow(rec, x_axis='s', y_axis='s',
... hop_length=hop_length, ax=ax[0])
>>> ax[0].set(title='Unfiltered recurrence')
>>> imgpe = librosa.display.specshow(rec_smooth, x_axis='s', y_axis='s',
... hop_length=hop_length, ax=ax[1])
>>> ax[1].set(title='Multi-angle enhanced recurrence')
>>> ax[1].label_outer()
>>> fig.colorbar(img, ax=ax[0], orientation='horizontal')
>>> fig.colorbar(imgpe, ax=ax[1], orientation='horizontal')
"""
if min_ratio is None:
min_ratio = 1.0 / max_ratio
elif min_ratio > max_ratio:
raise ParameterError(
f"min_ratio={min_ratio} cannot exceed max_ratio={max_ratio}"
)
R_smooth = None
for ratio in np.logspace(
np.log2(min_ratio), np.log2(max_ratio), num=n_filters, base=2
):
kernel = diagonal_filter(window, n, slope=ratio, zero_mean=zero_mean)
# Expand leading dimensions to match R
# This way, if R has shape, eg, [2, 3, n, n]
# the expanded kernel will have shape [1, 1, m, m]
# The following is valid for numpy >= 1.18
# kernel = np.expand_dims(kernel, axis=list(np.arange(R.ndim - kernel.ndim)))
# This is functionally equivalent, but works on numpy 1.17
shape = [1] * R.ndim
shape[-2:] = kernel.shape
kernel = np.reshape(kernel, shape)
if R_smooth is None:
R_smooth = scipy.ndimage.convolve(R, kernel, **kwargs)
else:
# Compute the point-wise maximum in-place
np.maximum(
R_smooth, scipy.ndimage.convolve(R, kernel, **kwargs), out=R_smooth
)
if clip:
# Clip the output in-place
np.clip(R_smooth, 0, None, out=R_smooth) # type: ignore
return np.asanyarray(R_smooth)
def __affinity_bandwidth(
rec: scipy.sparse.csr_matrix,
bw_mode: Optional[Union[np.ndarray, _FloatLike_co, str]],
k: int,
) -> Union[float, np.ndarray]:
# rec should be a csr_matrix
# the api allows users to specify a scalar bandwidth directly, besides the string based options.
if isinstance(bw_mode, np.ndarray):
bandwidth = bw_mode
# check if bw is the right size
if bandwidth.shape != rec.shape:
raise ParameterError(
f"Invalid matrix bandwidth shape: {bandwidth.shape}."
f"Should be {rec.shape}."
)
if (bandwidth <= 0).any():
raise ParameterError(
"Invalid bandwidth. All entries must be strictly positive."
)
return np.array(bandwidth[rec.nonzero()])
elif isinstance(bw_mode, (int, float)):
scalar_bandwidth = float(bw_mode)
if scalar_bandwidth <= 0:
raise ParameterError(
f"Invalid scalar bandwidth={scalar_bandwidth}. Must be strictly positive."
)
return scalar_bandwidth
if bw_mode is None:
bw_mode = "med_k_scalar"
if bw_mode not in [
"med_k_scalar",
"mean_k",
"gmean_k",
"mean_k_avg",
"gmean_k_avg",
"mean_k_avg_and_pair",
]:
raise ParameterError(
f"Invalid bandwidth='{bw_mode}'. Must be either a positive scalar or one of "
"['med_k_scalar', 'mean_k', 'gmean_k', 'mean_k_avg', 'gmean_k_avg', 'mean_k_avg_and_pair']"
)
# build a list of list that stores the distances to k nearest neighbors for all t points.
t = rec.shape[0]
knn_dists = []
for i in range(t):
# Get the links from point i
links = rec[i].nonzero()[1]
# catch empty dists lists in knn_dists
if len(links) == 0:
# Disconnected vertices are only a problem for point-wise bandwidth estimation
if bw_mode not in ["med_k_scalar"]:
raise ParameterError(f"The sample at time point {i} has no neighbors")
else:
# If we have no links, then there's no distance
# shove a nan in here
knn_dists.append(np.array([np.nan]))
else:
# Compute k nearest neighbors' distance and sort ascending
knn_dist_row = np.sort(rec[i, links].toarray()[0])[:k]
knn_dists.append(knn_dist_row)
# take the last element of each list for the distance to kth neighbor
dist_to_k = np.asarray([dists[-1] for dists in knn_dists])
avg_dist_to_first_ks = np.asarray([np.mean(dists) for dists in knn_dists])
if bw_mode == "med_k_scalar":
if not np.any(np.isfinite(dist_to_k)):
raise ParameterError("Cannot estimate bandwidth from an empty graph")
return float(np.nanmedian(dist_to_k))
if bw_mode in ["mean_k", "gmean_k"]:
# building bandwidth components (sigma) using sparse matrix structures and indices
sigma_i_data = np.empty_like(rec.data)
sigma_j_data = np.empty_like(rec.data)
for row in range(t):
sigma_i_data[rec.indptr[row] : rec.indptr[row + 1]] = dist_to_k[row]
col_idx = rec.indices[rec.indptr[row] : rec.indptr[row + 1]]
sigma_j_data[rec.indptr[row] : rec.indptr[row + 1]] = dist_to_k[col_idx]
if bw_mode == "mean_k":
out = np.array((sigma_i_data + sigma_j_data) / 2)
elif bw_mode == "gmean_k":
out = np.array((sigma_i_data * sigma_j_data) ** 0.5)
if bw_mode in ["mean_k_avg", "gmean_k_avg", "mean_k_avg_and_pair"]:
# building bandwidth components (sigma) using sparse matrix structures and indices
sigma_i_data = np.empty_like(rec.data)
sigma_j_data = np.empty_like(rec.data)
for row in range(t):
sigma_i_data[rec.indptr[row] : rec.indptr[row + 1]] = avg_dist_to_first_ks[
row
]
col_idx = rec.indices[rec.indptr[row] : rec.indptr[row + 1]]
sigma_j_data[rec.indptr[row] : rec.indptr[row + 1]] = avg_dist_to_first_ks[
col_idx
]
if bw_mode == "mean_k_avg":
out = np.array((sigma_i_data + sigma_j_data) / 2)
elif bw_mode == "gmean_k_avg":
out = np.array((sigma_i_data * sigma_j_data) ** 0.5)
elif bw_mode == "mean_k_avg_and_pair":
out = np.array((sigma_i_data + sigma_j_data + rec.data) / 3)
return out