ai-content-maker/.venv/Lib/site-packages/networkx/classes/tests/test_multidigraph.py

460 lines
16 KiB
Python

from collections import UserDict
import pytest
import networkx as nx
from networkx.utils import edges_equal
from .test_multigraph import BaseMultiGraphTester
from .test_multigraph import TestEdgeSubgraph as _TestMultiGraphEdgeSubgraph
from .test_multigraph import TestMultiGraph as _TestMultiGraph
class BaseMultiDiGraphTester(BaseMultiGraphTester):
def test_edges(self):
G = self.K3
edges = [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.edges()) == edges
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
pytest.raises((KeyError, nx.NetworkXError), G.edges, -1)
def test_edges_data(self):
G = self.K3
edges = [(0, 1, {}), (0, 2, {}), (1, 0, {}), (1, 2, {}), (2, 0, {}), (2, 1, {})]
assert sorted(G.edges(data=True)) == edges
assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
pytest.raises((KeyError, nx.NetworkXError), G.neighbors, -1)
def test_edges_multi(self):
G = self.K3
assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
G.add_edge(0, 1)
assert sorted(G.edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
def test_out_edges(self):
G = self.K3
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
pytest.raises((KeyError, nx.NetworkXError), G.out_edges, -1)
assert sorted(G.out_edges(0, keys=True)) == [(0, 1, 0), (0, 2, 0)]
def test_out_edges_multi(self):
G = self.K3
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
G.add_edge(0, 1, 2)
assert sorted(G.out_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
def test_out_edges_data(self):
G = self.K3
assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
G.remove_edge(0, 1)
G.add_edge(0, 1, data=1)
assert sorted(G.edges(0, data=True)) == [(0, 1, {"data": 1}), (0, 2, {})]
assert sorted(G.edges(0, data="data")) == [(0, 1, 1), (0, 2, None)]
assert sorted(G.edges(0, data="data", default=-1)) == [(0, 1, 1), (0, 2, -1)]
def test_in_edges(self):
G = self.K3
assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
pytest.raises((KeyError, nx.NetworkXError), G.in_edges, -1)
G.add_edge(0, 1, 2)
assert sorted(G.in_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
assert sorted(G.in_edges(0, keys=True)) == [(1, 0, 0), (2, 0, 0)]
def test_in_edges_no_keys(self):
G = self.K3
assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
G.add_edge(0, 1, 2)
assert sorted(G.in_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
assert sorted(G.in_edges(data=True, keys=False)) == [
(0, 1, {}),
(0, 1, {}),
(0, 2, {}),
(1, 0, {}),
(1, 2, {}),
(2, 0, {}),
(2, 1, {}),
]
def test_in_edges_data(self):
G = self.K3
assert sorted(G.in_edges(0, data=True)) == [(1, 0, {}), (2, 0, {})]
G.remove_edge(1, 0)
G.add_edge(1, 0, data=1)
assert sorted(G.in_edges(0, data=True)) == [(1, 0, {"data": 1}), (2, 0, {})]
assert sorted(G.in_edges(0, data="data")) == [(1, 0, 1), (2, 0, None)]
assert sorted(G.in_edges(0, data="data", default=-1)) == [(1, 0, 1), (2, 0, -1)]
def is_shallow(self, H, G):
# graph
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] == H.graph["foo"]
# node
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
# edge
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
def is_deep(self, H, G):
# graph
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] != H.graph["foo"]
# node
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] != H.nodes[0]["foo"]
# edge
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
def test_to_undirected(self):
# MultiDiGraph -> MultiGraph changes number of edges so it is
# not a copy operation... use is_shallow, not is_shallow_copy
G = self.K3
self.add_attributes(G)
H = nx.MultiGraph(G)
# self.is_shallow(H,G)
# the result is traversal order dependent so we
# can't use the is_shallow() test here.
try:
assert edges_equal(H.edges(), [(0, 1), (1, 2), (2, 0)])
except AssertionError:
assert edges_equal(H.edges(), [(0, 1), (1, 2), (1, 2), (2, 0)])
H = G.to_undirected()
self.is_deep(H, G)
def test_has_successor(self):
G = self.K3
assert G.has_successor(0, 1)
assert not G.has_successor(0, -1)
def test_successors(self):
G = self.K3
assert sorted(G.successors(0)) == [1, 2]
pytest.raises((KeyError, nx.NetworkXError), G.successors, -1)
def test_has_predecessor(self):
G = self.K3
assert G.has_predecessor(0, 1)
assert not G.has_predecessor(0, -1)
def test_predecessors(self):
G = self.K3
assert sorted(G.predecessors(0)) == [1, 2]
pytest.raises((KeyError, nx.NetworkXError), G.predecessors, -1)
def test_degree(self):
G = self.K3
assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
assert G.degree(0) == 4
assert list(G.degree(iter([0]))) == [(0, 4)]
G.add_edge(0, 1, weight=0.3, other=1.2)
assert sorted(G.degree(weight="weight")) == [(0, 4.3), (1, 4.3), (2, 4)]
assert sorted(G.degree(weight="other")) == [(0, 5.2), (1, 5.2), (2, 4)]
def test_in_degree(self):
G = self.K3
assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
assert G.in_degree(0) == 2
assert list(G.in_degree(iter([0]))) == [(0, 2)]
assert G.in_degree(0, weight="weight") == 2
def test_out_degree(self):
G = self.K3
assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
assert G.out_degree(0) == 2
assert list(G.out_degree(iter([0]))) == [(0, 2)]
assert G.out_degree(0, weight="weight") == 2
def test_size(self):
G = self.K3
assert G.size() == 6
assert G.number_of_edges() == 6
G.add_edge(0, 1, weight=0.3, other=1.2)
assert round(G.size(weight="weight"), 2) == 6.3
assert round(G.size(weight="other"), 2) == 7.2
def test_to_undirected_reciprocal(self):
G = self.Graph()
G.add_edge(1, 2)
assert G.to_undirected().has_edge(1, 2)
assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
G.add_edge(2, 1)
assert G.to_undirected(reciprocal=True).has_edge(1, 2)
def test_reverse_copy(self):
G = nx.MultiDiGraph([(0, 1), (0, 1)])
R = G.reverse()
assert sorted(R.edges()) == [(1, 0), (1, 0)]
R.remove_edge(1, 0)
assert sorted(R.edges()) == [(1, 0)]
assert sorted(G.edges()) == [(0, 1), (0, 1)]
def test_reverse_nocopy(self):
G = nx.MultiDiGraph([(0, 1), (0, 1)])
R = G.reverse(copy=False)
assert sorted(R.edges()) == [(1, 0), (1, 0)]
pytest.raises(nx.NetworkXError, R.remove_edge, 1, 0)
def test_di_attributes_cached(self):
G = self.K3.copy()
assert id(G.in_edges) == id(G.in_edges)
assert id(G.out_edges) == id(G.out_edges)
assert id(G.in_degree) == id(G.in_degree)
assert id(G.out_degree) == id(G.out_degree)
assert id(G.succ) == id(G.succ)
assert id(G.pred) == id(G.pred)
class TestMultiDiGraph(BaseMultiDiGraphTester, _TestMultiGraph):
def setup_method(self):
self.Graph = nx.MultiDiGraph
# build K3
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = {0: {}, 1: {}, 2: {}}
# K3._adj is synced with K3._succ
self.K3._pred = {0: {}, 1: {}, 2: {}}
for u in self.k3nodes:
for v in self.k3nodes:
if u == v:
continue
d = {0: {}}
self.K3._succ[u][v] = d
self.K3._pred[v][u] = d
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G._adj == {0: {1: {0: {}}}, 1: {}}
assert G._succ == {0: {1: {0: {}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G._adj == {0: {1: {0: {}}}, 1: {}}
assert G._succ == {0: {1: {0: {}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}}}}
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edge(None, 3)
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
assert G._adj == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
assert G._succ == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}, 1: {"weight": 3}}}}
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
assert G._succ == {
0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
1: {},
}
assert G._pred == {
0: {},
1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
}
G = self.Graph()
edges = [
(0, 1, {"weight": 3}),
(0, 1, (("weight", 2),)),
(0, 1, 5),
(0, 1, "s"),
]
G.add_edges_from(edges)
keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
assert G._succ == {0: {1: keydict}, 1: {}}
assert G._pred == {1: {0: keydict}, 0: {}}
# too few in tuple
pytest.raises(nx.NetworkXError, G.add_edges_from, [(0,)])
# too many in tuple
pytest.raises(nx.NetworkXError, G.add_edges_from, [(0, 1, 2, 3, 4)])
# not a tuple
pytest.raises(TypeError, G.add_edges_from, [0])
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edges_from([(None, 3), (3, 2)])
def test_remove_edge(self):
G = self.K3
G.remove_edge(0, 1)
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, 0, 2, key=1)
def test_remove_multiedge(self):
G = self.K3
G.add_edge(0, 1, key="parallel edge")
G.remove_edge(0, 1, key="parallel edge")
assert G._adj == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._succ == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
G.remove_edge(0, 1)
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
def test_remove_edges_from(self):
G = self.K3
G.remove_edges_from([(0, 1)])
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
G.remove_edges_from([(0, 0)]) # silent fail
class TestEdgeSubgraph(_TestMultiGraphEdgeSubgraph):
"""Unit tests for the :meth:`MultiDiGraph.edge_subgraph` method."""
def setup_method(self):
# Create a quadruply-linked path graph on five nodes.
G = nx.MultiDiGraph()
nx.add_path(G, range(5))
nx.add_path(G, range(5))
nx.add_path(G, reversed(range(5)))
nx.add_path(G, reversed(range(5)))
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.adj[0][1][0]["name"] = "edge010"
G.adj[0][1][1]["name"] = "edge011"
G.adj[3][4][0]["name"] = "edge340"
G.adj[3][4][1]["name"] = "edge341"
G.graph["name"] = "graph"
# Get the subgraph induced by one of the first edges and one of
# the last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
class CustomDictClass(UserDict):
pass
class MultiDiGraphSubClass(nx.MultiDiGraph):
node_dict_factory = CustomDictClass # type: ignore
node_attr_dict_factory = CustomDictClass # type: ignore
adjlist_outer_dict_factory = CustomDictClass # type: ignore
adjlist_inner_dict_factory = CustomDictClass # type: ignore
edge_key_dict_factory = CustomDictClass # type: ignore
edge_attr_dict_factory = CustomDictClass # type: ignore
graph_attr_dict_factory = CustomDictClass # type: ignore
class TestMultiDiGraphSubclass(TestMultiDiGraph):
def setup_method(self):
self.Graph = MultiDiGraphSubClass
# build K3
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = self.K3.adjlist_outer_dict_factory(
{
0: self.K3.adjlist_inner_dict_factory(),
1: self.K3.adjlist_inner_dict_factory(),
2: self.K3.adjlist_inner_dict_factory(),
}
)
# K3._adj is synced with K3._succ
self.K3._pred = {0: {}, 1: {}, 2: {}}
for u in self.k3nodes:
for v in self.k3nodes:
if u == v:
continue
d = {0: {}}
self.K3._succ[u][v] = d
self.K3._pred[v][u] = d
self.K3._node = self.K3.node_dict_factory()
self.K3._node[0] = self.K3.node_attr_dict_factory()
self.K3._node[1] = self.K3.node_attr_dict_factory()
self.K3._node[2] = self.K3.node_attr_dict_factory()