ai-content-maker/.venv/Lib/site-packages/numba/cuda/cudadrv/driver.py

3217 lines
104 KiB
Python

"""
CUDA driver bridge implementation
NOTE:
The new driver implementation uses a *_PendingDeallocs* that help prevents a
crashing the system (particularly OSX) when the CUDA context is corrupted at
resource deallocation. The old approach ties resource management directly
into the object destructor; thus, at corruption of the CUDA context,
subsequent deallocation could further corrupt the CUDA context and causes the
system to freeze in some cases.
"""
import sys
import os
import ctypes
import weakref
import functools
import warnings
import logging
import threading
import asyncio
import pathlib
from itertools import product
from abc import ABCMeta, abstractmethod
from ctypes import (c_int, byref, c_size_t, c_char, c_char_p, addressof,
c_void_p, c_float, c_uint)
import contextlib
import importlib
import numpy as np
from collections import namedtuple, deque
from numba import mviewbuf
from numba.core import utils, serialize, config
from .error import CudaSupportError, CudaDriverError
from .drvapi import API_PROTOTYPES
from .drvapi import cu_occupancy_b2d_size, cu_stream_callback_pyobj, cu_uuid
from numba.cuda.cudadrv import enums, drvapi, nvrtc, _extras
USE_NV_BINDING = config.CUDA_USE_NVIDIA_BINDING
if USE_NV_BINDING:
from cuda import cuda as binding
# There is no definition of the default stream in the Nvidia bindings (nor
# is there at the C/C++ level), so we define it here so we don't need to
# use a magic number 0 in places where we want the default stream.
CU_STREAM_DEFAULT = 0
MIN_REQUIRED_CC = (3, 5)
SUPPORTS_IPC = sys.platform.startswith('linux')
_py_decref = ctypes.pythonapi.Py_DecRef
_py_incref = ctypes.pythonapi.Py_IncRef
_py_decref.argtypes = [ctypes.py_object]
_py_incref.argtypes = [ctypes.py_object]
def make_logger():
logger = logging.getLogger(__name__)
# is logging configured?
if not logger.hasHandlers():
# read user config
lvl = str(config.CUDA_LOG_LEVEL).upper()
lvl = getattr(logging, lvl, None)
if not isinstance(lvl, int):
# default to critical level
lvl = logging.CRITICAL
logger.setLevel(lvl)
# did user specify a level?
if config.CUDA_LOG_LEVEL:
# create a simple handler that prints to stderr
handler = logging.StreamHandler(sys.stderr)
fmt = '== CUDA [%(relativeCreated)d] %(levelname)5s -- %(message)s'
handler.setFormatter(logging.Formatter(fmt=fmt))
logger.addHandler(handler)
else:
# otherwise, put a null handler
logger.addHandler(logging.NullHandler())
return logger
class DeadMemoryError(RuntimeError):
pass
class LinkerError(RuntimeError):
pass
class CudaAPIError(CudaDriverError):
def __init__(self, code, msg):
self.code = code
self.msg = msg
super(CudaAPIError, self).__init__(code, msg)
def __str__(self):
return "[%s] %s" % (self.code, self.msg)
def locate_driver_and_loader():
envpath = config.CUDA_DRIVER
if envpath == '0':
# Force fail
_raise_driver_not_found()
# Determine DLL type
if sys.platform == 'win32':
dlloader = ctypes.WinDLL
dldir = ['\\windows\\system32']
dlnames = ['nvcuda.dll']
elif sys.platform == 'darwin':
dlloader = ctypes.CDLL
dldir = ['/usr/local/cuda/lib']
dlnames = ['libcuda.dylib']
else:
# Assume to be *nix like
dlloader = ctypes.CDLL
dldir = ['/usr/lib', '/usr/lib64']
dlnames = ['libcuda.so', 'libcuda.so.1']
if envpath:
try:
envpath = os.path.abspath(envpath)
except ValueError:
raise ValueError("NUMBA_CUDA_DRIVER %s is not a valid path" %
envpath)
if not os.path.isfile(envpath):
raise ValueError("NUMBA_CUDA_DRIVER %s is not a valid file "
"path. Note it must be a filepath of the .so/"
".dll/.dylib or the driver" % envpath)
candidates = [envpath]
else:
# First search for the name in the default library path.
# If that is not found, try the specific path.
candidates = dlnames + [os.path.join(x, y)
for x, y in product(dldir, dlnames)]
return dlloader, candidates
def load_driver(dlloader, candidates):
# Load the driver; Collect driver error information
path_not_exist = []
driver_load_error = []
for path in candidates:
try:
dll = dlloader(path)
except OSError as e:
# Problem opening the DLL
path_not_exist.append(not os.path.isfile(path))
driver_load_error.append(e)
else:
return dll, path
# Problem loading driver
if all(path_not_exist):
_raise_driver_not_found()
else:
errmsg = '\n'.join(str(e) for e in driver_load_error)
_raise_driver_error(errmsg)
def find_driver():
dlloader, candidates = locate_driver_and_loader()
dll, path = load_driver(dlloader, candidates)
return dll
DRIVER_NOT_FOUND_MSG = """
CUDA driver library cannot be found.
If you are sure that a CUDA driver is installed,
try setting environment variable NUMBA_CUDA_DRIVER
with the file path of the CUDA driver shared library.
"""
DRIVER_LOAD_ERROR_MSG = """
Possible CUDA driver libraries are found but error occurred during load:
%s
"""
def _raise_driver_not_found():
raise CudaSupportError(DRIVER_NOT_FOUND_MSG)
def _raise_driver_error(e):
raise CudaSupportError(DRIVER_LOAD_ERROR_MSG % e)
def _build_reverse_error_map():
prefix = 'CUDA_ERROR'
map = utils.UniqueDict()
for name in dir(enums):
if name.startswith(prefix):
code = getattr(enums, name)
map[code] = name
return map
def _getpid():
return os.getpid()
ERROR_MAP = _build_reverse_error_map()
class Driver(object):
"""
Driver API functions are lazily bound.
"""
_singleton = None
def __new__(cls):
obj = cls._singleton
if obj is not None:
return obj
else:
obj = object.__new__(cls)
cls._singleton = obj
return obj
def __init__(self):
self.devices = utils.UniqueDict()
self.is_initialized = False
self.initialization_error = None
self.pid = None
try:
if config.DISABLE_CUDA:
msg = ("CUDA is disabled due to setting NUMBA_DISABLE_CUDA=1 "
"in the environment, or because CUDA is unsupported on "
"32-bit systems.")
raise CudaSupportError(msg)
self.lib = find_driver()
except CudaSupportError as e:
self.is_initialized = True
self.initialization_error = e.msg
def ensure_initialized(self):
if self.is_initialized:
return
# lazily initialize logger
global _logger
_logger = make_logger()
self.is_initialized = True
try:
_logger.info('init')
self.cuInit(0)
except CudaAPIError as e:
description = f"{e.msg} ({e.code})"
self.initialization_error = description
raise CudaSupportError(f"Error at driver init: {description}")
else:
self.pid = _getpid()
self._initialize_extras()
def _initialize_extras(self):
if USE_NV_BINDING:
# The extras are only needed when using Numba's ctypes bindings
return
# set pointer to original cuIpcOpenMemHandle
set_proto = ctypes.CFUNCTYPE(None, c_void_p)
set_cuIpcOpenMemHandle = set_proto(_extras.set_cuIpcOpenMemHandle)
set_cuIpcOpenMemHandle(self._find_api('cuIpcOpenMemHandle'))
# bind caller to cuIpcOpenMemHandle that fixes the ABI
call_proto = ctypes.CFUNCTYPE(c_int,
ctypes.POINTER(drvapi.cu_device_ptr),
ctypes.POINTER(drvapi.cu_ipc_mem_handle),
ctypes.c_uint)
call_cuIpcOpenMemHandle = call_proto(_extras.call_cuIpcOpenMemHandle)
call_cuIpcOpenMemHandle.__name__ = 'call_cuIpcOpenMemHandle'
safe_call = self._ctypes_wrap_fn('call_cuIpcOpenMemHandle',
call_cuIpcOpenMemHandle)
# override cuIpcOpenMemHandle
self.cuIpcOpenMemHandle = safe_call
@property
def is_available(self):
self.ensure_initialized()
return self.initialization_error is None
def __getattr__(self, fname):
# First request of a driver API function
self.ensure_initialized()
if self.initialization_error is not None:
raise CudaSupportError("Error at driver init: \n%s:" %
self.initialization_error)
if USE_NV_BINDING:
return self._cuda_python_wrap_fn(fname)
else:
return self._ctypes_wrap_fn(fname)
def _ctypes_wrap_fn(self, fname, libfn=None):
# Wrap a CUDA driver function by default
if libfn is None:
try:
proto = API_PROTOTYPES[fname]
except KeyError:
raise AttributeError(fname)
restype = proto[0]
argtypes = proto[1:]
# Find function in driver library
libfn = self._find_api(fname)
libfn.restype = restype
libfn.argtypes = argtypes
def verbose_cuda_api_call(*args):
argstr = ", ".join([str(arg) for arg in args])
_logger.debug('call driver api: %s(%s)', libfn.__name__, argstr)
retcode = libfn(*args)
self._check_ctypes_error(fname, retcode)
def safe_cuda_api_call(*args):
_logger.debug('call driver api: %s', libfn.__name__)
retcode = libfn(*args)
self._check_ctypes_error(fname, retcode)
if config.CUDA_LOG_API_ARGS:
wrapper = verbose_cuda_api_call
else:
wrapper = safe_cuda_api_call
safe_call = functools.wraps(libfn)(wrapper)
setattr(self, fname, safe_call)
return safe_call
def _cuda_python_wrap_fn(self, fname):
libfn = getattr(binding, fname)
def verbose_cuda_api_call(*args):
argstr = ", ".join([str(arg) for arg in args])
_logger.debug('call driver api: %s(%s)', libfn.__name__, argstr)
return self._check_cuda_python_error(fname, libfn(*args))
def safe_cuda_api_call(*args):
_logger.debug('call driver api: %s', libfn.__name__)
return self._check_cuda_python_error(fname, libfn(*args))
if config.CUDA_LOG_API_ARGS:
wrapper = verbose_cuda_api_call
else:
wrapper = safe_cuda_api_call
safe_call = functools.wraps(libfn)(wrapper)
setattr(self, fname, safe_call)
return safe_call
def _find_api(self, fname):
# We use alternatively-named functions for PTDS with the Numba ctypes
# binding. For the NVidia binding, it handles linking to the correct
# variant.
if config.CUDA_PER_THREAD_DEFAULT_STREAM and not USE_NV_BINDING:
variants = ('_v2_ptds', '_v2_ptsz', '_ptds', '_ptsz', '_v2', '')
else:
variants = ('_v2', '')
for variant in variants:
try:
return getattr(self.lib, f'{fname}{variant}')
except AttributeError:
pass
# Not found.
# Delay missing function error to use
def absent_function(*args, **kws):
raise CudaDriverError(f'Driver missing function: {fname}')
setattr(self, fname, absent_function)
return absent_function
def _detect_fork(self):
if self.pid is not None and _getpid() != self.pid:
msg = 'pid %s forked from pid %s after CUDA driver init'
_logger.critical(msg, _getpid(), self.pid)
raise CudaDriverError("CUDA initialized before forking")
def _check_ctypes_error(self, fname, retcode):
if retcode != enums.CUDA_SUCCESS:
errname = ERROR_MAP.get(retcode, "UNKNOWN_CUDA_ERROR")
msg = "Call to %s results in %s" % (fname, errname)
_logger.error(msg)
if retcode == enums.CUDA_ERROR_NOT_INITIALIZED:
self._detect_fork()
raise CudaAPIError(retcode, msg)
def _check_cuda_python_error(self, fname, returned):
retcode = returned[0]
retval = returned[1:]
if len(retval) == 1:
retval = retval[0]
if retcode != binding.CUresult.CUDA_SUCCESS:
msg = "Call to %s results in %s" % (fname, retcode.name)
_logger.error(msg)
if retcode == binding.CUresult.CUDA_ERROR_NOT_INITIALIZED:
self._detect_fork()
raise CudaAPIError(retcode, msg)
return retval
def get_device(self, devnum=0):
dev = self.devices.get(devnum)
if dev is None:
dev = Device(devnum)
self.devices[devnum] = dev
return weakref.proxy(dev)
def get_device_count(self):
if USE_NV_BINDING:
return self.cuDeviceGetCount()
count = c_int()
self.cuDeviceGetCount(byref(count))
return count.value
def list_devices(self):
"""Returns a list of active devices
"""
return list(self.devices.values())
def reset(self):
"""Reset all devices
"""
for dev in self.devices.values():
dev.reset()
def pop_active_context(self):
"""Pop the active CUDA context and return the handle.
If no CUDA context is active, return None.
"""
with self.get_active_context() as ac:
if ac.devnum is not None:
if USE_NV_BINDING:
return driver.cuCtxPopCurrent()
else:
popped = drvapi.cu_context()
driver.cuCtxPopCurrent(byref(popped))
return popped
def get_active_context(self):
"""Returns an instance of ``_ActiveContext``.
"""
return _ActiveContext()
def get_version(self):
"""
Returns the CUDA Runtime version as a tuple (major, minor).
"""
if USE_NV_BINDING:
version = driver.cuDriverGetVersion()
else:
dv = ctypes.c_int(0)
driver.cuDriverGetVersion(ctypes.byref(dv))
version = dv.value
# The version is encoded as (1000 * major) + (10 * minor)
major = version // 1000
minor = (version - (major * 1000)) // 10
return (major, minor)
class _ActiveContext(object):
"""An contextmanager object to cache active context to reduce dependency
on querying the CUDA driver API.
Once entering the context, it is assumed that the active CUDA context is
not changed until the context is exited.
"""
_tls_cache = threading.local()
def __enter__(self):
is_top = False
# check TLS cache
if hasattr(self._tls_cache, 'ctx_devnum'):
hctx, devnum = self._tls_cache.ctx_devnum
# Not cached. Query the driver API.
else:
if USE_NV_BINDING:
hctx = driver.cuCtxGetCurrent()
if int(hctx) == 0:
hctx = None
else:
hctx = drvapi.cu_context(0)
driver.cuCtxGetCurrent(byref(hctx))
hctx = hctx if hctx.value else None
if hctx is None:
devnum = None
else:
if USE_NV_BINDING:
devnum = int(driver.cuCtxGetDevice())
else:
hdevice = drvapi.cu_device()
driver.cuCtxGetDevice(byref(hdevice))
devnum = hdevice.value
self._tls_cache.ctx_devnum = (hctx, devnum)
is_top = True
self._is_top = is_top
self.context_handle = hctx
self.devnum = devnum
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self._is_top:
delattr(self._tls_cache, 'ctx_devnum')
def __bool__(self):
"""Returns True is there's a valid and active CUDA context.
"""
return self.context_handle is not None
__nonzero__ = __bool__
driver = Driver()
def _build_reverse_device_attrs():
prefix = "CU_DEVICE_ATTRIBUTE_"
map = utils.UniqueDict()
for name in dir(enums):
if name.startswith(prefix):
map[name[len(prefix):]] = getattr(enums, name)
return map
DEVICE_ATTRIBUTES = _build_reverse_device_attrs()
class Device(object):
"""
The device object owns the CUDA contexts. This is owned by the driver
object. User should not construct devices directly.
"""
@classmethod
def from_identity(self, identity):
"""Create Device object from device identity created by
``Device.get_device_identity()``.
"""
for devid in range(driver.get_device_count()):
d = driver.get_device(devid)
if d.get_device_identity() == identity:
return d
else:
errmsg = (
"No device of {} is found. "
"Target device may not be visible in this process."
).format(identity)
raise RuntimeError(errmsg)
def __init__(self, devnum):
if USE_NV_BINDING:
result = driver.cuDeviceGet(devnum)
self.id = result
got_devnum = int(result)
else:
result = c_int()
driver.cuDeviceGet(byref(result), devnum)
got_devnum = result.value
self.id = got_devnum
msg = f"Driver returned device {got_devnum} instead of {devnum}"
if devnum != got_devnum:
raise RuntimeError(msg)
self.attributes = {}
# Read compute capability
self.compute_capability = (self.COMPUTE_CAPABILITY_MAJOR,
self.COMPUTE_CAPABILITY_MINOR)
# Read name
bufsz = 128
if USE_NV_BINDING:
buf = driver.cuDeviceGetName(bufsz, self.id)
name = buf.decode('utf-8').rstrip('\0')
else:
buf = (c_char * bufsz)()
driver.cuDeviceGetName(buf, bufsz, self.id)
name = buf.value
self.name = name
# Read UUID
if USE_NV_BINDING:
uuid = driver.cuDeviceGetUuid(self.id)
uuid_vals = tuple(uuid.bytes)
else:
uuid = cu_uuid()
driver.cuDeviceGetUuid(byref(uuid), self.id)
uuid_vals = tuple(bytes(uuid))
b = '%02x'
b2 = b * 2
b4 = b * 4
b6 = b * 6
fmt = f'GPU-{b4}-{b2}-{b2}-{b2}-{b6}'
self.uuid = fmt % uuid_vals
self.primary_context = None
def get_device_identity(self):
return {
'pci_domain_id': self.PCI_DOMAIN_ID,
'pci_bus_id': self.PCI_BUS_ID,
'pci_device_id': self.PCI_DEVICE_ID,
}
def __repr__(self):
return "<CUDA device %d '%s'>" % (self.id, self.name)
def __getattr__(self, attr):
"""Read attributes lazily
"""
if USE_NV_BINDING:
code = getattr(binding.CUdevice_attribute,
f'CU_DEVICE_ATTRIBUTE_{attr}')
value = driver.cuDeviceGetAttribute(code, self.id)
else:
try:
code = DEVICE_ATTRIBUTES[attr]
except KeyError:
raise AttributeError(attr)
result = c_int()
driver.cuDeviceGetAttribute(byref(result), code, self.id)
value = result.value
setattr(self, attr, value)
return value
def __hash__(self):
return hash(self.id)
def __eq__(self, other):
if isinstance(other, Device):
return self.id == other.id
return False
def __ne__(self, other):
return not (self == other)
def get_primary_context(self):
"""
Returns the primary context for the device.
Note: it is not pushed to the CPU thread.
"""
if self.primary_context is not None:
return self.primary_context
met_requirement_for_device(self)
# create primary context
if USE_NV_BINDING:
hctx = driver.cuDevicePrimaryCtxRetain(self.id)
else:
hctx = drvapi.cu_context()
driver.cuDevicePrimaryCtxRetain(byref(hctx), self.id)
ctx = Context(weakref.proxy(self), hctx)
self.primary_context = ctx
return ctx
def release_primary_context(self):
"""
Release reference to primary context if it has been retained.
"""
if self.primary_context:
driver.cuDevicePrimaryCtxRelease(self.id)
self.primary_context = None
def reset(self):
try:
if self.primary_context is not None:
self.primary_context.reset()
self.release_primary_context()
finally:
# reset at the driver level
driver.cuDevicePrimaryCtxReset(self.id)
@property
def supports_float16(self):
return self.compute_capability >= (5, 3)
def met_requirement_for_device(device):
if device.compute_capability < MIN_REQUIRED_CC:
raise CudaSupportError("%s has compute capability < %s" %
(device, MIN_REQUIRED_CC))
class BaseCUDAMemoryManager(object, metaclass=ABCMeta):
"""Abstract base class for External Memory Management (EMM) Plugins."""
def __init__(self, *args, **kwargs):
if 'context' not in kwargs:
raise RuntimeError("Memory manager requires a context")
self.context = kwargs.pop('context')
@abstractmethod
def memalloc(self, size):
"""
Allocate on-device memory in the current context.
:param size: Size of allocation in bytes
:type size: int
:return: A memory pointer instance that owns the allocated memory
:rtype: :class:`MemoryPointer`
"""
@abstractmethod
def memhostalloc(self, size, mapped, portable, wc):
"""
Allocate pinned host memory.
:param size: Size of the allocation in bytes
:type size: int
:param mapped: Whether the allocated memory should be mapped into the
CUDA address space.
:type mapped: bool
:param portable: Whether the memory will be considered pinned by all
contexts, and not just the calling context.
:type portable: bool
:param wc: Whether to allocate the memory as write-combined.
:type wc: bool
:return: A memory pointer instance that owns the allocated memory. The
return type depends on whether the region was mapped into
device memory.
:rtype: :class:`MappedMemory` or :class:`PinnedMemory`
"""
@abstractmethod
def mempin(self, owner, pointer, size, mapped):
"""
Pin a region of host memory that is already allocated.
:param owner: The object that owns the memory.
:param pointer: The pointer to the beginning of the region to pin.
:type pointer: int
:param size: The size of the region in bytes.
:type size: int
:param mapped: Whether the region should also be mapped into device
memory.
:type mapped: bool
:return: A memory pointer instance that refers to the allocated
memory.
:rtype: :class:`MappedMemory` or :class:`PinnedMemory`
"""
@abstractmethod
def initialize(self):
"""
Perform any initialization required for the EMM plugin instance to be
ready to use.
:return: None
"""
@abstractmethod
def get_ipc_handle(self, memory):
"""
Return an IPC handle from a GPU allocation.
:param memory: Memory for which the IPC handle should be created.
:type memory: :class:`MemoryPointer`
:return: IPC handle for the allocation
:rtype: :class:`IpcHandle`
"""
@abstractmethod
def get_memory_info(self):
"""
Returns ``(free, total)`` memory in bytes in the context. May raise
:class:`NotImplementedError`, if returning such information is not
practical (e.g. for a pool allocator).
:return: Memory info
:rtype: :class:`MemoryInfo`
"""
@abstractmethod
def reset(self):
"""
Clears up all memory allocated in this context.
:return: None
"""
@abstractmethod
def defer_cleanup(self):
"""
Returns a context manager that ensures the implementation of deferred
cleanup whilst it is active.
:return: Context manager
"""
@property
@abstractmethod
def interface_version(self):
"""
Returns an integer specifying the version of the EMM Plugin interface
supported by the plugin implementation. Should always return 1 for
implementations of this version of the specification.
"""
class HostOnlyCUDAMemoryManager(BaseCUDAMemoryManager):
"""Base class for External Memory Management (EMM) Plugins that only
implement on-device allocation. A subclass need not implement the
``memhostalloc`` and ``mempin`` methods.
This class also implements ``reset`` and ``defer_cleanup`` (see
:class:`numba.cuda.BaseCUDAMemoryManager`) for its own internal state
management. If an EMM Plugin based on this class also implements these
methods, then its implementations of these must also call the method from
``super()`` to give ``HostOnlyCUDAMemoryManager`` an opportunity to do the
necessary work for the host allocations it is managing.
This class does not implement ``interface_version``, as it will always be
consistent with the version of Numba in which it is implemented. An EMM
Plugin subclassing this class should implement ``interface_version``
instead.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.allocations = utils.UniqueDict()
self.deallocations = _PendingDeallocs()
def _attempt_allocation(self, allocator):
"""
Attempt allocation by calling *allocator*. If an out-of-memory error
is raised, the pending deallocations are flushed and the allocation
is retried. If it fails in the second attempt, the error is reraised.
"""
try:
return allocator()
except CudaAPIError as e:
# is out-of-memory?
if USE_NV_BINDING:
oom_code = binding.CUresult.CUDA_ERROR_OUT_OF_MEMORY
else:
oom_code = enums.CUDA_ERROR_OUT_OF_MEMORY
if e.code == oom_code:
# clear pending deallocations
self.deallocations.clear()
# try again
return allocator()
else:
raise
def memhostalloc(self, size, mapped=False, portable=False,
wc=False):
"""Implements the allocation of pinned host memory.
It is recommended that this method is not overridden by EMM Plugin
implementations - instead, use the :class:`BaseCUDAMemoryManager`.
"""
flags = 0
if mapped:
flags |= enums.CU_MEMHOSTALLOC_DEVICEMAP
if portable:
flags |= enums.CU_MEMHOSTALLOC_PORTABLE
if wc:
flags |= enums.CU_MEMHOSTALLOC_WRITECOMBINED
if USE_NV_BINDING:
def allocator():
return driver.cuMemHostAlloc(size, flags)
if mapped:
pointer = self._attempt_allocation(allocator)
else:
pointer = allocator()
alloc_key = pointer
else:
pointer = c_void_p()
def allocator():
driver.cuMemHostAlloc(byref(pointer), size, flags)
if mapped:
self._attempt_allocation(allocator)
else:
allocator()
alloc_key = pointer.value
finalizer = _hostalloc_finalizer(self, pointer, alloc_key, size, mapped)
ctx = weakref.proxy(self.context)
if mapped:
mem = MappedMemory(ctx, pointer, size, finalizer=finalizer)
self.allocations[alloc_key] = mem
return mem.own()
else:
return PinnedMemory(ctx, pointer, size, finalizer=finalizer)
def mempin(self, owner, pointer, size, mapped=False):
"""Implements the pinning of host memory.
It is recommended that this method is not overridden by EMM Plugin
implementations - instead, use the :class:`BaseCUDAMemoryManager`.
"""
if isinstance(pointer, int) and not USE_NV_BINDING:
pointer = c_void_p(pointer)
if USE_NV_BINDING:
alloc_key = pointer
else:
alloc_key = pointer.value
# possible flags are "portable" (between context)
# and "device-map" (map host memory to device thus no need
# for memory transfer).
flags = 0
if mapped:
flags |= enums.CU_MEMHOSTREGISTER_DEVICEMAP
def allocator():
driver.cuMemHostRegister(pointer, size, flags)
if mapped:
self._attempt_allocation(allocator)
else:
allocator()
finalizer = _pin_finalizer(self, pointer, alloc_key, mapped)
ctx = weakref.proxy(self.context)
if mapped:
mem = MappedMemory(ctx, pointer, size, owner=owner,
finalizer=finalizer)
self.allocations[alloc_key] = mem
return mem.own()
else:
return PinnedMemory(ctx, pointer, size, owner=owner,
finalizer=finalizer)
def memallocmanaged(self, size, attach_global):
if USE_NV_BINDING:
def allocator():
ma_flags = binding.CUmemAttach_flags
if attach_global:
flags = ma_flags.CU_MEM_ATTACH_GLOBAL.value
else:
flags = ma_flags.CU_MEM_ATTACH_HOST.value
return driver.cuMemAllocManaged(size, flags)
ptr = self._attempt_allocation(allocator)
alloc_key = ptr
else:
ptr = drvapi.cu_device_ptr()
def allocator():
flags = c_uint()
if attach_global:
flags = enums.CU_MEM_ATTACH_GLOBAL
else:
flags = enums.CU_MEM_ATTACH_HOST
driver.cuMemAllocManaged(byref(ptr), size, flags)
self._attempt_allocation(allocator)
alloc_key = ptr.value
finalizer = _alloc_finalizer(self, ptr, alloc_key, size)
ctx = weakref.proxy(self.context)
mem = ManagedMemory(ctx, ptr, size, finalizer=finalizer)
self.allocations[alloc_key] = mem
return mem.own()
def reset(self):
"""Clears up all host memory (mapped and/or pinned) in the current
context.
EMM Plugins that override this method must call ``super().reset()`` to
ensure that host allocations are also cleaned up."""
self.allocations.clear()
self.deallocations.clear()
@contextlib.contextmanager
def defer_cleanup(self):
"""Returns a context manager that disables cleanup of mapped or pinned
host memory in the current context whilst it is active.
EMM Plugins that override this method must obtain the context manager
from this method before yielding to ensure that cleanup of host
allocations is also deferred."""
with self.deallocations.disable():
yield
class GetIpcHandleMixin:
"""A class that provides a default implementation of ``get_ipc_handle()``.
"""
def get_ipc_handle(self, memory):
"""Open an IPC memory handle by using ``cuMemGetAddressRange`` to
determine the base pointer of the allocation. An IPC handle of type
``cu_ipc_mem_handle`` is constructed and initialized with
``cuIpcGetMemHandle``. A :class:`numba.cuda.IpcHandle` is returned,
populated with the underlying ``ipc_mem_handle``.
"""
base, end = device_extents(memory)
if USE_NV_BINDING:
ipchandle = driver.cuIpcGetMemHandle(base)
offset = int(memory.handle) - int(base)
else:
ipchandle = drvapi.cu_ipc_mem_handle()
driver.cuIpcGetMemHandle(byref(ipchandle), base)
offset = memory.handle.value - base
source_info = self.context.device.get_device_identity()
return IpcHandle(memory, ipchandle, memory.size, source_info,
offset=offset)
class NumbaCUDAMemoryManager(GetIpcHandleMixin, HostOnlyCUDAMemoryManager):
"""Internal on-device memory management for Numba. This is implemented using
the EMM Plugin interface, but is not part of the public API."""
def initialize(self):
# Set the memory capacity of *deallocations* as the memory manager
# becomes active for the first time
if self.deallocations.memory_capacity == _SizeNotSet:
self.deallocations.memory_capacity = self.get_memory_info().total
def memalloc(self, size):
if USE_NV_BINDING:
def allocator():
return driver.cuMemAlloc(size)
ptr = self._attempt_allocation(allocator)
alloc_key = ptr
else:
ptr = drvapi.cu_device_ptr()
def allocator():
driver.cuMemAlloc(byref(ptr), size)
self._attempt_allocation(allocator)
alloc_key = ptr.value
finalizer = _alloc_finalizer(self, ptr, alloc_key, size)
ctx = weakref.proxy(self.context)
mem = AutoFreePointer(ctx, ptr, size, finalizer=finalizer)
self.allocations[alloc_key] = mem
return mem.own()
def get_memory_info(self):
if USE_NV_BINDING:
free, total = driver.cuMemGetInfo()
else:
free = c_size_t()
total = c_size_t()
driver.cuMemGetInfo(byref(free), byref(total))
free = free.value
total = total.value
return MemoryInfo(free=free, total=total)
@property
def interface_version(self):
return _SUPPORTED_EMM_INTERFACE_VERSION
_SUPPORTED_EMM_INTERFACE_VERSION = 1
_memory_manager = None
def _ensure_memory_manager():
global _memory_manager
if _memory_manager:
return
if config.CUDA_MEMORY_MANAGER == 'default':
_memory_manager = NumbaCUDAMemoryManager
return
try:
mgr_module = importlib.import_module(config.CUDA_MEMORY_MANAGER)
set_memory_manager(mgr_module._numba_memory_manager)
except Exception:
raise RuntimeError("Failed to use memory manager from %s" %
config.CUDA_MEMORY_MANAGER)
def set_memory_manager(mm_plugin):
"""Configure Numba to use an External Memory Management (EMM) Plugin. If
the EMM Plugin version does not match one supported by this version of
Numba, a RuntimeError will be raised.
:param mm_plugin: The class implementing the EMM Plugin.
:type mm_plugin: BaseCUDAMemoryManager
:return: None
"""
global _memory_manager
dummy = mm_plugin(context=None)
iv = dummy.interface_version
if iv != _SUPPORTED_EMM_INTERFACE_VERSION:
err = "EMM Plugin interface has version %d - version %d required" \
% (iv, _SUPPORTED_EMM_INTERFACE_VERSION)
raise RuntimeError(err)
_memory_manager = mm_plugin
class _SizeNotSet(int):
"""
Dummy object for _PendingDeallocs when *size* is not set.
"""
def __new__(cls, *args, **kwargs):
return super().__new__(cls, 0)
def __str__(self):
return '?'
_SizeNotSet = _SizeNotSet()
class _PendingDeallocs(object):
"""
Pending deallocations of a context (or device since we are using the primary
context). The capacity defaults to being unset (_SizeNotSet) but can be
modified later once the driver is initialized and the total memory capacity
known.
"""
def __init__(self, capacity=_SizeNotSet):
self._cons = deque()
self._disable_count = 0
self._size = 0
self.memory_capacity = capacity
@property
def _max_pending_bytes(self):
return int(self.memory_capacity * config.CUDA_DEALLOCS_RATIO)
def add_item(self, dtor, handle, size=_SizeNotSet):
"""
Add a pending deallocation.
The *dtor* arg is the destructor function that takes an argument,
*handle*. It is used as ``dtor(handle)``. The *size* arg is the
byte size of the resource added. It is an optional argument. Some
resources (e.g. CUModule) has an unknown memory footprint on the device.
"""
_logger.info('add pending dealloc: %s %s bytes', dtor.__name__, size)
self._cons.append((dtor, handle, size))
self._size += int(size)
if (len(self._cons) > config.CUDA_DEALLOCS_COUNT or
self._size > self._max_pending_bytes):
self.clear()
def clear(self):
"""
Flush any pending deallocations unless it is disabled.
Do nothing if disabled.
"""
if not self.is_disabled:
while self._cons:
[dtor, handle, size] = self._cons.popleft()
_logger.info('dealloc: %s %s bytes', dtor.__name__, size)
dtor(handle)
self._size = 0
@contextlib.contextmanager
def disable(self):
"""
Context manager to temporarily disable flushing pending deallocation.
This can be nested.
"""
self._disable_count += 1
try:
yield
finally:
self._disable_count -= 1
assert self._disable_count >= 0
@property
def is_disabled(self):
return self._disable_count > 0
def __len__(self):
"""
Returns number of pending deallocations.
"""
return len(self._cons)
MemoryInfo = namedtuple("MemoryInfo", "free,total")
"""Free and total memory for a device.
.. py:attribute:: free
Free device memory in bytes.
.. py:attribute:: total
Total device memory in bytes.
"""
class Context(object):
"""
This object wraps a CUDA Context resource.
Contexts should not be constructed directly by user code.
"""
def __init__(self, device, handle):
self.device = device
self.handle = handle
self.allocations = utils.UniqueDict()
self.deallocations = _PendingDeallocs()
_ensure_memory_manager()
self.memory_manager = _memory_manager(context=self)
self.modules = utils.UniqueDict()
# For storing context specific data
self.extras = {}
def reset(self):
"""
Clean up all owned resources in this context.
"""
# Free owned resources
_logger.info('reset context of device %s', self.device.id)
self.memory_manager.reset()
self.modules.clear()
# Clear trash
self.deallocations.clear()
def get_memory_info(self):
"""Returns (free, total) memory in bytes in the context.
"""
return self.memory_manager.get_memory_info()
def get_active_blocks_per_multiprocessor(self, func, blocksize, memsize,
flags=None):
"""Return occupancy of a function.
:param func: kernel for which occupancy is calculated
:param blocksize: block size the kernel is intended to be launched with
:param memsize: per-block dynamic shared memory usage intended, in bytes
"""
args = (func, blocksize, memsize, flags)
if USE_NV_BINDING:
return self._cuda_python_active_blocks_per_multiprocessor(*args)
else:
return self._ctypes_active_blocks_per_multiprocessor(*args)
def _cuda_python_active_blocks_per_multiprocessor(self, func, blocksize,
memsize, flags):
ps = [func.handle, blocksize, memsize]
if not flags:
return driver.cuOccupancyMaxActiveBlocksPerMultiprocessor(*ps)
ps.append(flags)
return driver.cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(*ps)
def _ctypes_active_blocks_per_multiprocessor(self, func, blocksize,
memsize, flags):
retval = c_int()
args = (byref(retval), func.handle, blocksize, memsize)
if not flags:
driver.cuOccupancyMaxActiveBlocksPerMultiprocessor(*args)
else:
driver.cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(*args)
return retval.value
def get_max_potential_block_size(self, func, b2d_func, memsize,
blocksizelimit, flags=None):
"""Suggest a launch configuration with reasonable occupancy.
:param func: kernel for which occupancy is calculated
:param b2d_func: function that calculates how much per-block dynamic
shared memory 'func' uses based on the block size.
Can also be the address of a C function.
Use `0` to pass `NULL` to the underlying CUDA API.
:param memsize: per-block dynamic shared memory usage intended, in bytes
:param blocksizelimit: maximum block size the kernel is designed to
handle
"""
args = (func, b2d_func, memsize, blocksizelimit, flags)
if USE_NV_BINDING:
return self._cuda_python_max_potential_block_size(*args)
else:
return self._ctypes_max_potential_block_size(*args)
def _ctypes_max_potential_block_size(self, func, b2d_func, memsize,
blocksizelimit, flags):
gridsize = c_int()
blocksize = c_int()
b2d_cb = cu_occupancy_b2d_size(b2d_func)
args = [byref(gridsize), byref(blocksize), func.handle, b2d_cb,
memsize, blocksizelimit]
if not flags:
driver.cuOccupancyMaxPotentialBlockSize(*args)
else:
args.append(flags)
driver.cuOccupancyMaxPotentialBlockSizeWithFlags(*args)
return (gridsize.value, blocksize.value)
def _cuda_python_max_potential_block_size(self, func, b2d_func, memsize,
blocksizelimit, flags):
b2d_cb = ctypes.CFUNCTYPE(c_size_t, c_int)(b2d_func)
ptr = int.from_bytes(b2d_cb, byteorder='little')
driver_b2d_cb = binding.CUoccupancyB2DSize(ptr)
args = [func.handle, driver_b2d_cb, memsize, blocksizelimit]
if not flags:
return driver.cuOccupancyMaxPotentialBlockSize(*args)
else:
args.append(flags)
return driver.cuOccupancyMaxPotentialBlockSizeWithFlags(*args)
def prepare_for_use(self):
"""Initialize the context for use.
It's safe to be called multiple times.
"""
self.memory_manager.initialize()
def push(self):
"""
Pushes this context on the current CPU Thread.
"""
driver.cuCtxPushCurrent(self.handle)
self.prepare_for_use()
def pop(self):
"""
Pops this context off the current CPU thread. Note that this context
must be at the top of the context stack, otherwise an error will occur.
"""
popped = driver.pop_active_context()
if USE_NV_BINDING:
assert int(popped) == int(self.handle)
else:
assert popped.value == self.handle.value
def memalloc(self, bytesize):
return self.memory_manager.memalloc(bytesize)
def memallocmanaged(self, bytesize, attach_global=True):
return self.memory_manager.memallocmanaged(bytesize, attach_global)
def memhostalloc(self, bytesize, mapped=False, portable=False, wc=False):
return self.memory_manager.memhostalloc(bytesize, mapped, portable, wc)
def mempin(self, owner, pointer, size, mapped=False):
if mapped and not self.device.CAN_MAP_HOST_MEMORY:
raise CudaDriverError("%s cannot map host memory" % self.device)
return self.memory_manager.mempin(owner, pointer, size, mapped)
def get_ipc_handle(self, memory):
"""
Returns an *IpcHandle* from a GPU allocation.
"""
if not SUPPORTS_IPC:
raise OSError('OS does not support CUDA IPC')
return self.memory_manager.get_ipc_handle(memory)
def open_ipc_handle(self, handle, size):
# open the IPC handle to get the device pointer
flags = 1 # CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS
if USE_NV_BINDING:
dptr = driver.cuIpcOpenMemHandle(handle, flags)
else:
dptr = drvapi.cu_device_ptr()
driver.cuIpcOpenMemHandle(byref(dptr), handle, flags)
# wrap it
return MemoryPointer(context=weakref.proxy(self), pointer=dptr,
size=size)
def enable_peer_access(self, peer_context, flags=0):
"""Enable peer access between the current context and the peer context
"""
assert flags == 0, '*flags* is reserved and MUST be zero'
driver.cuCtxEnablePeerAccess(peer_context, flags)
def can_access_peer(self, peer_device):
"""Returns a bool indicating whether the peer access between the
current and peer device is possible.
"""
if USE_NV_BINDING:
peer_device = binding.CUdevice(peer_device)
can_access_peer = driver.cuDeviceCanAccessPeer(self.device.id,
peer_device)
else:
can_access_peer = c_int()
driver.cuDeviceCanAccessPeer(byref(can_access_peer),
self.device.id, peer_device,)
return bool(can_access_peer)
def create_module_ptx(self, ptx):
if isinstance(ptx, str):
ptx = ptx.encode('utf8')
if USE_NV_BINDING:
image = ptx
else:
image = c_char_p(ptx)
return self.create_module_image(image)
def create_module_image(self, image):
module = load_module_image(self, image)
if USE_NV_BINDING:
key = module.handle
else:
key = module.handle.value
self.modules[key] = module
return weakref.proxy(module)
def unload_module(self, module):
if USE_NV_BINDING:
key = module.handle
else:
key = module.handle.value
del self.modules[key]
def get_default_stream(self):
if USE_NV_BINDING:
handle = binding.CUstream(CU_STREAM_DEFAULT)
else:
handle = drvapi.cu_stream(drvapi.CU_STREAM_DEFAULT)
return Stream(weakref.proxy(self), handle, None)
def get_legacy_default_stream(self):
if USE_NV_BINDING:
handle = binding.CUstream(binding.CU_STREAM_LEGACY)
else:
handle = drvapi.cu_stream(drvapi.CU_STREAM_LEGACY)
return Stream(weakref.proxy(self), handle, None)
def get_per_thread_default_stream(self):
if USE_NV_BINDING:
handle = binding.CUstream(binding.CU_STREAM_PER_THREAD)
else:
handle = drvapi.cu_stream(drvapi.CU_STREAM_PER_THREAD)
return Stream(weakref.proxy(self), handle, None)
def create_stream(self):
if USE_NV_BINDING:
# The default stream creation flag, specifying that the created
# stream synchronizes with stream 0 (this is different from the
# default stream, which we define also as CU_STREAM_DEFAULT when
# the NV binding is in use).
flags = binding.CUstream_flags.CU_STREAM_DEFAULT.value
handle = driver.cuStreamCreate(flags)
else:
handle = drvapi.cu_stream()
driver.cuStreamCreate(byref(handle), 0)
return Stream(weakref.proxy(self), handle,
_stream_finalizer(self.deallocations, handle))
def create_external_stream(self, ptr):
if not isinstance(ptr, int):
raise TypeError("ptr for external stream must be an int")
if USE_NV_BINDING:
handle = binding.CUstream(ptr)
else:
handle = drvapi.cu_stream(ptr)
return Stream(weakref.proxy(self), handle, None,
external=True)
def create_event(self, timing=True):
flags = 0
if not timing:
flags |= enums.CU_EVENT_DISABLE_TIMING
if USE_NV_BINDING:
handle = driver.cuEventCreate(flags)
else:
handle = drvapi.cu_event()
driver.cuEventCreate(byref(handle), flags)
return Event(weakref.proxy(self), handle,
finalizer=_event_finalizer(self.deallocations, handle))
def synchronize(self):
driver.cuCtxSynchronize()
@contextlib.contextmanager
def defer_cleanup(self):
with self.memory_manager.defer_cleanup():
with self.deallocations.disable():
yield
def __repr__(self):
return "<CUDA context %s of device %d>" % (self.handle, self.device.id)
def __eq__(self, other):
if isinstance(other, Context):
return self.handle == other.handle
else:
return NotImplemented
def __ne__(self, other):
return not self.__eq__(other)
def load_module_image(context, image):
"""
image must be a pointer
"""
if USE_NV_BINDING:
return load_module_image_cuda_python(context, image)
else:
return load_module_image_ctypes(context, image)
def load_module_image_ctypes(context, image):
logsz = config.CUDA_LOG_SIZE
jitinfo = (c_char * logsz)()
jiterrors = (c_char * logsz)()
options = {
enums.CU_JIT_INFO_LOG_BUFFER: addressof(jitinfo),
enums.CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES: c_void_p(logsz),
enums.CU_JIT_ERROR_LOG_BUFFER: addressof(jiterrors),
enums.CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES: c_void_p(logsz),
enums.CU_JIT_LOG_VERBOSE: c_void_p(config.CUDA_VERBOSE_JIT_LOG),
}
option_keys = (drvapi.cu_jit_option * len(options))(*options.keys())
option_vals = (c_void_p * len(options))(*options.values())
handle = drvapi.cu_module()
try:
driver.cuModuleLoadDataEx(byref(handle), image, len(options),
option_keys, option_vals)
except CudaAPIError as e:
msg = "cuModuleLoadDataEx error:\n%s" % jiterrors.value.decode("utf8")
raise CudaAPIError(e.code, msg)
info_log = jitinfo.value
return CtypesModule(weakref.proxy(context), handle, info_log,
_module_finalizer(context, handle))
def load_module_image_cuda_python(context, image):
"""
image must be a pointer
"""
logsz = config.CUDA_LOG_SIZE
jitinfo = bytearray(logsz)
jiterrors = bytearray(logsz)
jit_option = binding.CUjit_option
options = {
jit_option.CU_JIT_INFO_LOG_BUFFER: jitinfo,
jit_option.CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES: logsz,
jit_option.CU_JIT_ERROR_LOG_BUFFER: jiterrors,
jit_option.CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES: logsz,
jit_option.CU_JIT_LOG_VERBOSE: config.CUDA_VERBOSE_JIT_LOG,
}
option_keys = [k for k in options.keys()]
option_vals = [v for v in options.values()]
try:
handle = driver.cuModuleLoadDataEx(image, len(options), option_keys,
option_vals)
except CudaAPIError as e:
err_string = jiterrors.decode('utf-8')
msg = "cuModuleLoadDataEx error:\n%s" % err_string
raise CudaAPIError(e.code, msg)
info_log = jitinfo.decode('utf-8')
return CudaPythonModule(weakref.proxy(context), handle, info_log,
_module_finalizer(context, handle))
def _alloc_finalizer(memory_manager, ptr, alloc_key, size):
allocations = memory_manager.allocations
deallocations = memory_manager.deallocations
def core():
if allocations:
del allocations[alloc_key]
deallocations.add_item(driver.cuMemFree, ptr, size)
return core
def _hostalloc_finalizer(memory_manager, ptr, alloc_key, size, mapped):
"""
Finalize page-locked host memory allocated by `context.memhostalloc`.
This memory is managed by CUDA, and finalization entails deallocation. The
issues noted in `_pin_finalizer` are not relevant in this case, and the
finalization is placed in the `context.deallocations` queue along with
finalization of device objects.
"""
allocations = memory_manager.allocations
deallocations = memory_manager.deallocations
if not mapped:
size = _SizeNotSet
def core():
if mapped and allocations:
del allocations[alloc_key]
deallocations.add_item(driver.cuMemFreeHost, ptr, size)
return core
def _pin_finalizer(memory_manager, ptr, alloc_key, mapped):
"""
Finalize temporary page-locking of host memory by `context.mempin`.
This applies to memory not otherwise managed by CUDA. Page-locking can
be requested multiple times on the same memory, and must therefore be
lifted as soon as finalization is requested, otherwise subsequent calls to
`mempin` may fail with `CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED`, leading
to unexpected behavior for the context managers `cuda.{pinned,mapped}`.
This function therefore carries out finalization immediately, bypassing the
`context.deallocations` queue.
"""
allocations = memory_manager.allocations
def core():
if mapped and allocations:
del allocations[alloc_key]
driver.cuMemHostUnregister(ptr)
return core
def _event_finalizer(deallocs, handle):
def core():
deallocs.add_item(driver.cuEventDestroy, handle)
return core
def _stream_finalizer(deallocs, handle):
def core():
deallocs.add_item(driver.cuStreamDestroy, handle)
return core
def _module_finalizer(context, handle):
dealloc = context.deallocations
modules = context.modules
if USE_NV_BINDING:
key = handle
else:
key = handle.value
def core():
shutting_down = utils.shutting_down # early bind
def module_unload(handle):
# If we are not shutting down, we must be called due to
# Context.reset() of Context.unload_module(). Both must have
# cleared the module reference from the context.
assert shutting_down() or key not in modules
driver.cuModuleUnload(handle)
dealloc.add_item(module_unload, handle)
return core
class _CudaIpcImpl(object):
"""Implementation of GPU IPC using CUDA driver API.
This requires the devices to be peer accessible.
"""
def __init__(self, parent):
self.base = parent.base
self.handle = parent.handle
self.size = parent.size
self.offset = parent.offset
# remember if the handle is already opened
self._opened_mem = None
def open(self, context):
"""
Import the IPC memory and returns a raw CUDA memory pointer object
"""
if self.base is not None:
raise ValueError('opening IpcHandle from original process')
if self._opened_mem is not None:
raise ValueError('IpcHandle is already opened')
mem = context.open_ipc_handle(self.handle, self.offset + self.size)
# this object owns the opened allocation
# note: it is required the memory be freed after the ipc handle is
# closed by the importing context.
self._opened_mem = mem
return mem.own().view(self.offset)
def close(self):
if self._opened_mem is None:
raise ValueError('IpcHandle not opened')
driver.cuIpcCloseMemHandle(self._opened_mem.handle)
self._opened_mem = None
class _StagedIpcImpl(object):
"""Implementation of GPU IPC using custom staging logic to workaround
CUDA IPC limitation on peer accessibility between devices.
"""
def __init__(self, parent, source_info):
self.parent = parent
self.base = parent.base
self.handle = parent.handle
self.size = parent.size
self.source_info = source_info
def open(self, context):
from numba import cuda
srcdev = Device.from_identity(self.source_info)
if USE_NV_BINDING:
srcdev_id = int(srcdev.id)
else:
srcdev_id = srcdev.id
impl = _CudaIpcImpl(parent=self.parent)
# Open context on the source device.
with cuda.gpus[srcdev_id]:
source_ptr = impl.open(cuda.devices.get_context())
# Allocate GPU buffer.
newmem = context.memalloc(self.size)
# Do D->D from the source peer-context
# This performs automatic host staging
device_to_device(newmem, source_ptr, self.size)
# Cleanup source context
with cuda.gpus[srcdev_id]:
impl.close()
return newmem
def close(self):
# Nothing has to be done here
pass
class IpcHandle(object):
"""
CUDA IPC handle. Serialization of the CUDA IPC handle object is implemented
here.
:param base: A reference to the original allocation to keep it alive
:type base: MemoryPointer
:param handle: The CUDA IPC handle, as a ctypes array of bytes.
:param size: Size of the original allocation
:type size: int
:param source_info: The identity of the device on which the IPC handle was
opened.
:type source_info: dict
:param offset: The offset into the underlying allocation of the memory
referred to by this IPC handle.
:type offset: int
"""
def __init__(self, base, handle, size, source_info=None, offset=0):
self.base = base
self.handle = handle
self.size = size
self.source_info = source_info
self._impl = None
self.offset = offset
def _sentry_source_info(self):
if self.source_info is None:
raise RuntimeError("IPC handle doesn't have source info")
def can_access_peer(self, context):
"""Returns a bool indicating whether the active context can peer
access the IPC handle
"""
self._sentry_source_info()
if self.source_info == context.device.get_device_identity():
return True
source_device = Device.from_identity(self.source_info)
return context.can_access_peer(source_device.id)
def open_staged(self, context):
"""Open the IPC by allowing staging on the host memory first.
"""
self._sentry_source_info()
if self._impl is not None:
raise ValueError('IpcHandle is already opened')
self._impl = _StagedIpcImpl(self, self.source_info)
return self._impl.open(context)
def open_direct(self, context):
"""
Import the IPC memory and returns a raw CUDA memory pointer object
"""
if self._impl is not None:
raise ValueError('IpcHandle is already opened')
self._impl = _CudaIpcImpl(self)
return self._impl.open(context)
def open(self, context):
"""Open the IPC handle and import the memory for usage in the given
context. Returns a raw CUDA memory pointer object.
This is enhanced over CUDA IPC that it will work regardless of whether
the source device is peer-accessible by the destination device.
If the devices are peer-accessible, it uses .open_direct().
If the devices are not peer-accessible, it uses .open_staged().
"""
if self.source_info is None or self.can_access_peer(context):
fn = self.open_direct
else:
fn = self.open_staged
return fn(context)
def open_array(self, context, shape, dtype, strides=None):
"""
Similar to `.open()` but returns an device array.
"""
from . import devicearray
# by default, set strides to itemsize
if strides is None:
strides = dtype.itemsize
dptr = self.open(context)
# read the device pointer as an array
return devicearray.DeviceNDArray(shape=shape, strides=strides,
dtype=dtype, gpu_data=dptr)
def close(self):
if self._impl is None:
raise ValueError('IpcHandle not opened')
self._impl.close()
self._impl = None
def __reduce__(self):
# Preprocess the IPC handle, which is defined as a byte array.
if USE_NV_BINDING:
preprocessed_handle = self.handle.reserved
else:
preprocessed_handle = tuple(self.handle)
args = (
self.__class__,
preprocessed_handle,
self.size,
self.source_info,
self.offset,
)
return (serialize._rebuild_reduction, args)
@classmethod
def _rebuild(cls, handle_ary, size, source_info, offset):
if USE_NV_BINDING:
handle = binding.CUipcMemHandle()
handle.reserved = handle_ary
else:
handle = drvapi.cu_ipc_mem_handle(*handle_ary)
return cls(base=None, handle=handle, size=size,
source_info=source_info, offset=offset)
class MemoryPointer(object):
"""A memory pointer that owns a buffer, with an optional finalizer. Memory
pointers provide reference counting, and instances are initialized with a
reference count of 1.
The base ``MemoryPointer`` class does not use the
reference count for managing the buffer lifetime. Instead, the buffer
lifetime is tied to the memory pointer instance's lifetime:
- When the instance is deleted, the finalizer will be called.
- When the reference count drops to 0, no action is taken.
Subclasses of ``MemoryPointer`` may modify these semantics, for example to
tie the buffer lifetime to the reference count, so that the buffer is freed
when there are no more references.
:param context: The context in which the pointer was allocated.
:type context: Context
:param pointer: The address of the buffer.
:type pointer: ctypes.c_void_p
:param size: The size of the allocation in bytes.
:type size: int
:param owner: The owner is sometimes set by the internals of this class, or
used for Numba's internal memory management. It should not be
provided by an external user of the ``MemoryPointer`` class
(e.g. from within an EMM Plugin); the default of `None`
should always suffice.
:type owner: NoneType
:param finalizer: A function that is called when the buffer is to be freed.
:type finalizer: function
"""
__cuda_memory__ = True
def __init__(self, context, pointer, size, owner=None, finalizer=None):
self.context = context
self.device_pointer = pointer
self.size = size
self._cuda_memsize_ = size
self.is_managed = finalizer is not None
self.refct = 1
self.handle = self.device_pointer
self._owner = owner
if finalizer is not None:
self._finalizer = weakref.finalize(self, finalizer)
@property
def owner(self):
return self if self._owner is None else self._owner
def own(self):
return OwnedPointer(weakref.proxy(self))
def free(self):
"""
Forces the device memory to the trash.
"""
if self.is_managed:
if not self._finalizer.alive:
raise RuntimeError("Freeing dead memory")
self._finalizer()
assert not self._finalizer.alive
def memset(self, byte, count=None, stream=0):
count = self.size if count is None else count
if stream:
driver.cuMemsetD8Async(self.device_pointer, byte, count,
stream.handle)
else:
driver.cuMemsetD8(self.device_pointer, byte, count)
def view(self, start, stop=None):
if stop is None:
size = self.size - start
else:
size = stop - start
# Handle NULL/empty memory buffer
if not self.device_pointer_value:
if size != 0:
raise RuntimeError("non-empty slice into empty slice")
view = self # new view is just a reference to self
# Handle normal case
else:
base = self.device_pointer_value + start
if size < 0:
raise RuntimeError('size cannot be negative')
if USE_NV_BINDING:
pointer = binding.CUdeviceptr()
ctypes_ptr = drvapi.cu_device_ptr.from_address(pointer.getPtr())
ctypes_ptr.value = base
else:
pointer = drvapi.cu_device_ptr(base)
view = MemoryPointer(self.context, pointer, size, owner=self.owner)
if isinstance(self.owner, (MemoryPointer, OwnedPointer)):
# Owned by a numba-managed memory segment, take an owned reference
return OwnedPointer(weakref.proxy(self.owner), view)
else:
# Owned by external alloc, return view with same external owner
return view
@property
def device_ctypes_pointer(self):
return self.device_pointer
@property
def device_pointer_value(self):
if USE_NV_BINDING:
return int(self.device_pointer) or None
else:
return self.device_pointer.value
class AutoFreePointer(MemoryPointer):
"""Modifies the ownership semantic of the MemoryPointer so that the
instance lifetime is directly tied to the number of references.
When the reference count reaches zero, the finalizer is invoked.
Constructor arguments are the same as for :class:`MemoryPointer`.
"""
def __init__(self, *args, **kwargs):
super(AutoFreePointer, self).__init__(*args, **kwargs)
# Releease the self reference to the buffer, so that the finalizer
# is invoked if all the derived pointers are gone.
self.refct -= 1
class MappedMemory(AutoFreePointer):
"""A memory pointer that refers to a buffer on the host that is mapped into
device memory.
:param context: The context in which the pointer was mapped.
:type context: Context
:param pointer: The address of the buffer.
:type pointer: ctypes.c_void_p
:param size: The size of the buffer in bytes.
:type size: int
:param owner: The owner is sometimes set by the internals of this class, or
used for Numba's internal memory management. It should not be
provided by an external user of the ``MappedMemory`` class
(e.g. from within an EMM Plugin); the default of `None`
should always suffice.
:type owner: NoneType
:param finalizer: A function that is called when the buffer is to be freed.
:type finalizer: function
"""
__cuda_memory__ = True
def __init__(self, context, pointer, size, owner=None, finalizer=None):
self.owned = owner
self.host_pointer = pointer
if USE_NV_BINDING:
devptr = driver.cuMemHostGetDevicePointer(pointer, 0)
self._bufptr_ = self.host_pointer
else:
devptr = drvapi.cu_device_ptr()
driver.cuMemHostGetDevicePointer(byref(devptr), pointer, 0)
self._bufptr_ = self.host_pointer.value
self.device_pointer = devptr
super(MappedMemory, self).__init__(context, devptr, size,
finalizer=finalizer)
self.handle = self.host_pointer
# For buffer interface
self._buflen_ = self.size
def own(self):
return MappedOwnedPointer(weakref.proxy(self))
class PinnedMemory(mviewbuf.MemAlloc):
"""A pointer to a pinned buffer on the host.
:param context: The context in which the pointer was mapped.
:type context: Context
:param owner: The object owning the memory. For EMM plugin implementation,
this ca
:param pointer: The address of the buffer.
:type pointer: ctypes.c_void_p
:param size: The size of the buffer in bytes.
:type size: int
:param owner: An object owning the buffer that has been pinned. For EMM
plugin implementation, the default of ``None`` suffices for
memory allocated in ``memhostalloc`` - for ``mempin``, it
should be the owner passed in to the ``mempin`` method.
:param finalizer: A function that is called when the buffer is to be freed.
:type finalizer: function
"""
def __init__(self, context, pointer, size, owner=None, finalizer=None):
self.context = context
self.owned = owner
self.size = size
self.host_pointer = pointer
self.is_managed = finalizer is not None
self.handle = self.host_pointer
# For buffer interface
self._buflen_ = self.size
if USE_NV_BINDING:
self._bufptr_ = self.host_pointer
else:
self._bufptr_ = self.host_pointer.value
if finalizer is not None:
weakref.finalize(self, finalizer)
def own(self):
return self
class ManagedMemory(AutoFreePointer):
"""A memory pointer that refers to a managed memory buffer (can be accessed
on both host and device).
:param context: The context in which the pointer was mapped.
:type context: Context
:param pointer: The address of the buffer.
:type pointer: ctypes.c_void_p
:param size: The size of the buffer in bytes.
:type size: int
:param owner: The owner is sometimes set by the internals of this class, or
used for Numba's internal memory management. It should not be
provided by an external user of the ``ManagedMemory`` class
(e.g. from within an EMM Plugin); the default of `None`
should always suffice.
:type owner: NoneType
:param finalizer: A function that is called when the buffer is to be freed.
:type finalizer: function
"""
__cuda_memory__ = True
def __init__(self, context, pointer, size, owner=None, finalizer=None):
self.owned = owner
devptr = pointer
super().__init__(context, devptr, size, finalizer=finalizer)
# For buffer interface
self._buflen_ = self.size
if USE_NV_BINDING:
self._bufptr_ = self.device_pointer
else:
self._bufptr_ = self.device_pointer.value
def own(self):
return ManagedOwnedPointer(weakref.proxy(self))
class OwnedPointer(object):
def __init__(self, memptr, view=None):
self._mem = memptr
if view is None:
self._view = self._mem
else:
assert not view.is_managed
self._view = view
mem = self._mem
def deref():
try:
mem.refct -= 1
assert mem.refct >= 0
if mem.refct == 0:
mem.free()
except ReferenceError:
# ignore reference error here
pass
self._mem.refct += 1
weakref.finalize(self, deref)
def __getattr__(self, fname):
"""Proxy MemoryPointer methods
"""
return getattr(self._view, fname)
class MappedOwnedPointer(OwnedPointer, mviewbuf.MemAlloc):
pass
class ManagedOwnedPointer(OwnedPointer, mviewbuf.MemAlloc):
pass
class Stream(object):
def __init__(self, context, handle, finalizer, external=False):
self.context = context
self.handle = handle
self.external = external
if finalizer is not None:
weakref.finalize(self, finalizer)
def __int__(self):
if USE_NV_BINDING:
return int(self.handle)
else:
# The default stream's handle.value is 0, which gives `None`
return self.handle.value or drvapi.CU_STREAM_DEFAULT
def __repr__(self):
if USE_NV_BINDING:
default_streams = {
CU_STREAM_DEFAULT: "<Default CUDA stream on %s>",
binding.CU_STREAM_LEGACY:
"<Legacy default CUDA stream on %s>",
binding.CU_STREAM_PER_THREAD:
"<Per-thread default CUDA stream on %s>",
}
ptr = int(self.handle) or 0
else:
default_streams = {
drvapi.CU_STREAM_DEFAULT: "<Default CUDA stream on %s>",
drvapi.CU_STREAM_LEGACY: "<Legacy default CUDA stream on %s>",
drvapi.CU_STREAM_PER_THREAD:
"<Per-thread default CUDA stream on %s>",
}
ptr = self.handle.value or drvapi.CU_STREAM_DEFAULT
if ptr in default_streams:
return default_streams[ptr] % self.context
elif self.external:
return "<External CUDA stream %d on %s>" % (ptr, self.context)
else:
return "<CUDA stream %d on %s>" % (ptr, self.context)
def synchronize(self):
'''
Wait for all commands in this stream to execute. This will commit any
pending memory transfers.
'''
driver.cuStreamSynchronize(self.handle)
@contextlib.contextmanager
def auto_synchronize(self):
'''
A context manager that waits for all commands in this stream to execute
and commits any pending memory transfers upon exiting the context.
'''
yield self
self.synchronize()
def add_callback(self, callback, arg=None):
"""
Add a callback to a compute stream.
The user provided function is called from a driver thread once all
preceding stream operations are complete.
Callback functions are called from a CUDA driver thread, not from
the thread that invoked `add_callback`. No CUDA API functions may
be called from within the callback function.
The duration of a callback function should be kept short, as the
callback will block later work in the stream and may block other
callbacks from being executed.
Note: The driver function underlying this method is marked for
eventual deprecation and may be replaced in a future CUDA release.
:param callback: Callback function with arguments (stream, status, arg).
:param arg: Optional user data to be passed to the callback function.
"""
data = (self, callback, arg)
_py_incref(data)
if USE_NV_BINDING:
ptr = int.from_bytes(self._stream_callback, byteorder='little')
stream_callback = binding.CUstreamCallback(ptr)
# The callback needs to receive a pointer to the data PyObject
data = id(data)
else:
stream_callback = self._stream_callback
driver.cuStreamAddCallback(self.handle, stream_callback, data, 0)
@staticmethod
@cu_stream_callback_pyobj
def _stream_callback(handle, status, data):
try:
stream, callback, arg = data
callback(stream, status, arg)
except Exception as e:
warnings.warn(f"Exception in stream callback: {e}")
finally:
_py_decref(data)
def async_done(self) -> asyncio.futures.Future:
"""
Return an awaitable that resolves once all preceding stream operations
are complete. The result of the awaitable is the current stream.
"""
loop = asyncio.get_running_loop()
future = loop.create_future()
def resolver(future, status):
if future.done():
return
elif status == 0:
future.set_result(self)
else:
future.set_exception(Exception(f"Stream error {status}"))
def callback(stream, status, future):
loop.call_soon_threadsafe(resolver, future, status)
self.add_callback(callback, future)
return future
class Event(object):
def __init__(self, context, handle, finalizer=None):
self.context = context
self.handle = handle
if finalizer is not None:
weakref.finalize(self, finalizer)
def query(self):
"""
Returns True if all work before the most recent record has completed;
otherwise, returns False.
"""
try:
driver.cuEventQuery(self.handle)
except CudaAPIError as e:
if e.code == enums.CUDA_ERROR_NOT_READY:
return False
else:
raise
else:
return True
def record(self, stream=0):
"""
Set the record point of the event to the current point in the given
stream.
The event will be considered to have occurred when all work that was
queued in the stream at the time of the call to ``record()`` has been
completed.
"""
if USE_NV_BINDING:
hstream = stream.handle if stream else binding.CUstream(0)
else:
hstream = stream.handle if stream else 0
driver.cuEventRecord(self.handle, hstream)
def synchronize(self):
"""
Synchronize the host thread for the completion of the event.
"""
driver.cuEventSynchronize(self.handle)
def wait(self, stream=0):
"""
All future works submitted to stream will wait util the event completes.
"""
if USE_NV_BINDING:
hstream = stream.handle if stream else binding.CUstream(0)
else:
hstream = stream.handle if stream else 0
flags = 0
driver.cuStreamWaitEvent(hstream, self.handle, flags)
def elapsed_time(self, evtend):
return event_elapsed_time(self, evtend)
def event_elapsed_time(evtstart, evtend):
'''
Compute the elapsed time between two events in milliseconds.
'''
if USE_NV_BINDING:
return driver.cuEventElapsedTime(evtstart.handle, evtend.handle)
else:
msec = c_float()
driver.cuEventElapsedTime(byref(msec), evtstart.handle, evtend.handle)
return msec.value
class Module(metaclass=ABCMeta):
"""Abstract base class for modules"""
def __init__(self, context, handle, info_log, finalizer=None):
self.context = context
self.handle = handle
self.info_log = info_log
if finalizer is not None:
self._finalizer = weakref.finalize(self, finalizer)
def unload(self):
"""Unload this module from the context"""
self.context.unload_module(self)
@abstractmethod
def get_function(self, name):
"""Returns a Function object encapsulating the named function"""
@abstractmethod
def get_global_symbol(self, name):
"""Return a MemoryPointer referring to the named symbol"""
class CtypesModule(Module):
def get_function(self, name):
handle = drvapi.cu_function()
driver.cuModuleGetFunction(byref(handle), self.handle,
name.encode('utf8'))
return CtypesFunction(weakref.proxy(self), handle, name)
def get_global_symbol(self, name):
ptr = drvapi.cu_device_ptr()
size = drvapi.c_size_t()
driver.cuModuleGetGlobal(byref(ptr), byref(size), self.handle,
name.encode('utf8'))
return MemoryPointer(self.context, ptr, size), size.value
class CudaPythonModule(Module):
def get_function(self, name):
handle = driver.cuModuleGetFunction(self.handle, name.encode('utf8'))
return CudaPythonFunction(weakref.proxy(self), handle, name)
def get_global_symbol(self, name):
ptr, size = driver.cuModuleGetGlobal(self.handle, name.encode('utf8'))
return MemoryPointer(self.context, ptr, size), size
FuncAttr = namedtuple("FuncAttr", ["regs", "shared", "local", "const",
"maxthreads"])
class Function(metaclass=ABCMeta):
griddim = 1, 1, 1
blockdim = 1, 1, 1
stream = 0
sharedmem = 0
def __init__(self, module, handle, name):
self.module = module
self.handle = handle
self.name = name
self.attrs = self.read_func_attr_all()
def __repr__(self):
return "<CUDA function %s>" % self.name
@property
def device(self):
return self.module.context.device
@abstractmethod
def cache_config(self, prefer_equal=False, prefer_cache=False,
prefer_shared=False):
"""Set the cache configuration for this function."""
@abstractmethod
def read_func_attr(self, attrid):
"""Return the value of the attribute with given ID."""
@abstractmethod
def read_func_attr_all(self):
"""Return a FuncAttr object with the values of various function
attributes."""
class CtypesFunction(Function):
def cache_config(self, prefer_equal=False, prefer_cache=False,
prefer_shared=False):
prefer_equal = prefer_equal or (prefer_cache and prefer_shared)
if prefer_equal:
flag = enums.CU_FUNC_CACHE_PREFER_EQUAL
elif prefer_cache:
flag = enums.CU_FUNC_CACHE_PREFER_L1
elif prefer_shared:
flag = enums.CU_FUNC_CACHE_PREFER_SHARED
else:
flag = enums.CU_FUNC_CACHE_PREFER_NONE
driver.cuFuncSetCacheConfig(self.handle, flag)
def read_func_attr(self, attrid):
retval = c_int()
driver.cuFuncGetAttribute(byref(retval), attrid, self.handle)
return retval.value
def read_func_attr_all(self):
nregs = self.read_func_attr(enums.CU_FUNC_ATTRIBUTE_NUM_REGS)
cmem = self.read_func_attr(enums.CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES)
lmem = self.read_func_attr(enums.CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES)
smem = self.read_func_attr(enums.CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES)
maxtpb = self.read_func_attr(
enums.CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK)
return FuncAttr(regs=nregs, const=cmem, local=lmem, shared=smem,
maxthreads=maxtpb)
class CudaPythonFunction(Function):
def cache_config(self, prefer_equal=False, prefer_cache=False,
prefer_shared=False):
prefer_equal = prefer_equal or (prefer_cache and prefer_shared)
attr = binding.CUfunction_attribute
if prefer_equal:
flag = attr.CU_FUNC_CACHE_PREFER_EQUAL
elif prefer_cache:
flag = attr.CU_FUNC_CACHE_PREFER_L1
elif prefer_shared:
flag = attr.CU_FUNC_CACHE_PREFER_SHARED
else:
flag = attr.CU_FUNC_CACHE_PREFER_NONE
driver.cuFuncSetCacheConfig(self.handle, flag)
def read_func_attr(self, attrid):
return driver.cuFuncGetAttribute(attrid, self.handle)
def read_func_attr_all(self):
attr = binding.CUfunction_attribute
nregs = self.read_func_attr(attr.CU_FUNC_ATTRIBUTE_NUM_REGS)
cmem = self.read_func_attr(attr.CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES)
lmem = self.read_func_attr(attr.CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES)
smem = self.read_func_attr(attr.CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES)
maxtpb = self.read_func_attr(
attr.CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK)
return FuncAttr(regs=nregs, const=cmem, local=lmem, shared=smem,
maxthreads=maxtpb)
def launch_kernel(cufunc_handle,
gx, gy, gz,
bx, by, bz,
sharedmem,
hstream,
args,
cooperative=False):
param_ptrs = [addressof(arg) for arg in args]
params = (c_void_p * len(param_ptrs))(*param_ptrs)
if USE_NV_BINDING:
params_for_launch = addressof(params)
extra = 0
else:
params_for_launch = params
extra = None
if cooperative:
driver.cuLaunchCooperativeKernel(cufunc_handle,
gx, gy, gz,
bx, by, bz,
sharedmem,
hstream,
params_for_launch)
else:
driver.cuLaunchKernel(cufunc_handle,
gx, gy, gz,
bx, by, bz,
sharedmem,
hstream,
params_for_launch,
extra)
if USE_NV_BINDING:
jitty = binding.CUjitInputType
FILE_EXTENSION_MAP = {
'o': jitty.CU_JIT_INPUT_OBJECT,
'ptx': jitty.CU_JIT_INPUT_PTX,
'a': jitty.CU_JIT_INPUT_LIBRARY,
'lib': jitty.CU_JIT_INPUT_LIBRARY,
'cubin': jitty.CU_JIT_INPUT_CUBIN,
'fatbin': jitty.CU_JIT_INPUT_FATBINARY,
}
else:
FILE_EXTENSION_MAP = {
'o': enums.CU_JIT_INPUT_OBJECT,
'ptx': enums.CU_JIT_INPUT_PTX,
'a': enums.CU_JIT_INPUT_LIBRARY,
'lib': enums.CU_JIT_INPUT_LIBRARY,
'cubin': enums.CU_JIT_INPUT_CUBIN,
'fatbin': enums.CU_JIT_INPUT_FATBINARY,
}
class Linker(metaclass=ABCMeta):
"""Abstract base class for linkers"""
@classmethod
def new(cls, max_registers=0, lineinfo=False, cc=None):
if config.CUDA_ENABLE_MINOR_VERSION_COMPATIBILITY:
return MVCLinker(max_registers, lineinfo, cc)
elif USE_NV_BINDING:
return CudaPythonLinker(max_registers, lineinfo, cc)
else:
return CtypesLinker(max_registers, lineinfo, cc)
@abstractmethod
def __init__(self, max_registers, lineinfo, cc):
pass
@property
@abstractmethod
def info_log(self):
"""Return the info log from the linker invocation"""
@property
@abstractmethod
def error_log(self):
"""Return the error log from the linker invocation"""
@abstractmethod
def add_ptx(self, ptx, name):
"""Add PTX source in a string to the link"""
def add_cu(self, cu, name):
"""Add CUDA source in a string to the link. The name of the source
file should be specified in `name`."""
with driver.get_active_context() as ac:
dev = driver.get_device(ac.devnum)
cc = dev.compute_capability
ptx, log = nvrtc.compile(cu, name, cc)
if config.DUMP_ASSEMBLY:
print(("ASSEMBLY %s" % name).center(80, '-'))
print(ptx)
print('=' * 80)
# Link the program's PTX using the normal linker mechanism
ptx_name = os.path.splitext(name)[0] + ".ptx"
self.add_ptx(ptx.encode(), ptx_name)
@abstractmethod
def add_file(self, path, kind):
"""Add code from a file to the link"""
def add_cu_file(self, path):
with open(path, 'rb') as f:
cu = f.read()
self.add_cu(cu, os.path.basename(path))
def add_file_guess_ext(self, path):
"""Add a file to the link, guessing its type from its extension."""
ext = os.path.splitext(path)[1][1:]
if ext == '':
raise RuntimeError("Don't know how to link file with no extension")
elif ext == 'cu':
self.add_cu_file(path)
else:
kind = FILE_EXTENSION_MAP.get(ext, None)
if kind is None:
raise RuntimeError("Don't know how to link file with extension "
f".{ext}")
self.add_file(path, kind)
@abstractmethod
def complete(self):
"""Complete the link. Returns (cubin, size)
cubin is a pointer to a internal buffer of cubin owned by the linker;
thus, it should be loaded before the linker is destroyed.
"""
_MVC_ERROR_MESSAGE = (
"Minor version compatibility requires ptxcompiler and cubinlinker packages "
"to be available"
)
class MVCLinker(Linker):
"""
Linker supporting Minor Version Compatibility, backed by the cubinlinker
package.
"""
def __init__(self, max_registers=None, lineinfo=False, cc=None):
try:
from cubinlinker import CubinLinker
except ImportError as err:
raise ImportError(_MVC_ERROR_MESSAGE) from err
if cc is None:
raise RuntimeError("MVCLinker requires Compute Capability to be "
"specified, but cc is None")
arch = f"sm_{cc[0] * 10 + cc[1]}"
ptx_compile_opts = ['--gpu-name', arch, '-c']
if max_registers:
arg = f"--maxrregcount={max_registers}"
ptx_compile_opts.append(arg)
if lineinfo:
ptx_compile_opts.append('--generate-line-info')
self.ptx_compile_options = tuple(ptx_compile_opts)
self._linker = CubinLinker(f"--arch={arch}")
@property
def info_log(self):
return self._linker.info_log
@property
def error_log(self):
return self._linker.error_log
def add_ptx(self, ptx, name='<cudapy-ptx>'):
try:
from ptxcompiler import compile_ptx
from cubinlinker import CubinLinkerError
except ImportError as err:
raise ImportError(_MVC_ERROR_MESSAGE) from err
compile_result = compile_ptx(ptx.decode(), self.ptx_compile_options)
try:
self._linker.add_cubin(compile_result.compiled_program, name)
except CubinLinkerError as e:
raise LinkerError from e
def add_file(self, path, kind):
try:
from cubinlinker import CubinLinkerError
except ImportError as err:
raise ImportError(_MVC_ERROR_MESSAGE) from err
try:
with open(path, 'rb') as f:
data = f.read()
except FileNotFoundError:
raise LinkerError(f'{path} not found')
name = pathlib.Path(path).name
if kind == FILE_EXTENSION_MAP['cubin']:
fn = self._linker.add_cubin
elif kind == FILE_EXTENSION_MAP['fatbin']:
fn = self._linker.add_fatbin
elif kind == FILE_EXTENSION_MAP['a']:
raise LinkerError(f"Don't know how to link {kind}")
elif kind == FILE_EXTENSION_MAP['ptx']:
return self.add_ptx(data, name)
else:
raise LinkerError(f"Don't know how to link {kind}")
try:
fn(data, name)
except CubinLinkerError as e:
raise LinkerError from e
def complete(self):
try:
from cubinlinker import CubinLinkerError
except ImportError as err:
raise ImportError(_MVC_ERROR_MESSAGE) from err
try:
return self._linker.complete()
except CubinLinkerError as e:
raise LinkerError from e
class CtypesLinker(Linker):
"""
Links for current device if no CC given
"""
def __init__(self, max_registers=0, lineinfo=False, cc=None):
logsz = config.CUDA_LOG_SIZE
linkerinfo = (c_char * logsz)()
linkererrors = (c_char * logsz)()
options = {
enums.CU_JIT_INFO_LOG_BUFFER: addressof(linkerinfo),
enums.CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES: c_void_p(logsz),
enums.CU_JIT_ERROR_LOG_BUFFER: addressof(linkererrors),
enums.CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES: c_void_p(logsz),
enums.CU_JIT_LOG_VERBOSE: c_void_p(1),
}
if max_registers:
options[enums.CU_JIT_MAX_REGISTERS] = c_void_p(max_registers)
if lineinfo:
options[enums.CU_JIT_GENERATE_LINE_INFO] = c_void_p(1)
if cc is None:
# No option value is needed, but we need something as a placeholder
options[enums.CU_JIT_TARGET_FROM_CUCONTEXT] = 1
else:
cc_val = cc[0] * 10 + cc[1]
options[enums.CU_JIT_TARGET] = c_void_p(cc_val)
raw_keys = list(options.keys())
raw_values = list(options.values())
option_keys = (drvapi.cu_jit_option * len(raw_keys))(*raw_keys)
option_vals = (c_void_p * len(raw_values))(*raw_values)
self.handle = handle = drvapi.cu_link_state()
driver.cuLinkCreate(len(raw_keys), option_keys, option_vals,
byref(self.handle))
weakref.finalize(self, driver.cuLinkDestroy, handle)
self.linker_info_buf = linkerinfo
self.linker_errors_buf = linkererrors
self._keep_alive = [linkerinfo, linkererrors, option_keys, option_vals]
@property
def info_log(self):
return self.linker_info_buf.value.decode('utf8')
@property
def error_log(self):
return self.linker_errors_buf.value.decode('utf8')
def add_ptx(self, ptx, name='<cudapy-ptx>'):
ptxbuf = c_char_p(ptx)
namebuf = c_char_p(name.encode('utf8'))
self._keep_alive += [ptxbuf, namebuf]
try:
driver.cuLinkAddData(self.handle, enums.CU_JIT_INPUT_PTX,
ptxbuf, len(ptx), namebuf, 0, None, None)
except CudaAPIError as e:
raise LinkerError("%s\n%s" % (e, self.error_log))
def add_file(self, path, kind):
pathbuf = c_char_p(path.encode("utf8"))
self._keep_alive.append(pathbuf)
try:
driver.cuLinkAddFile(self.handle, kind, pathbuf, 0, None, None)
except CudaAPIError as e:
if e.code == enums.CUDA_ERROR_FILE_NOT_FOUND:
msg = f'{path} not found'
else:
msg = "%s\n%s" % (e, self.error_log)
raise LinkerError(msg)
def complete(self):
cubin_buf = c_void_p(0)
size = c_size_t(0)
try:
driver.cuLinkComplete(self.handle, byref(cubin_buf), byref(size))
except CudaAPIError as e:
raise LinkerError("%s\n%s" % (e, self.error_log))
size = size.value
assert size > 0, 'linker returned a zero sized cubin'
del self._keep_alive[:]
# We return a copy of the cubin because it's owned by the linker
cubin_ptr = ctypes.cast(cubin_buf, ctypes.POINTER(ctypes.c_char))
return bytes(np.ctypeslib.as_array(cubin_ptr, shape=(size,)))
class CudaPythonLinker(Linker):
"""
Links for current device if no CC given
"""
def __init__(self, max_registers=0, lineinfo=False, cc=None):
logsz = config.CUDA_LOG_SIZE
linkerinfo = bytearray(logsz)
linkererrors = bytearray(logsz)
jit_option = binding.CUjit_option
options = {
jit_option.CU_JIT_INFO_LOG_BUFFER: linkerinfo,
jit_option.CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES: logsz,
jit_option.CU_JIT_ERROR_LOG_BUFFER: linkererrors,
jit_option.CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES: logsz,
jit_option.CU_JIT_LOG_VERBOSE: 1,
}
if max_registers:
options[jit_option.CU_JIT_MAX_REGISTERS] = max_registers
if lineinfo:
options[jit_option.CU_JIT_GENERATE_LINE_INFO] = 1
if cc is None:
# No option value is needed, but we need something as a placeholder
options[jit_option.CU_JIT_TARGET_FROM_CUCONTEXT] = 1
else:
cc_val = cc[0] * 10 + cc[1]
cc_enum = getattr(binding.CUjit_target,
f'CU_TARGET_COMPUTE_{cc_val}')
options[jit_option.CU_JIT_TARGET] = cc_enum
raw_keys = list(options.keys())
raw_values = list(options.values())
self.handle = driver.cuLinkCreate(len(raw_keys), raw_keys, raw_values)
weakref.finalize(self, driver.cuLinkDestroy, self.handle)
self.linker_info_buf = linkerinfo
self.linker_errors_buf = linkererrors
self._keep_alive = [linkerinfo, linkererrors, raw_keys, raw_values]
@property
def info_log(self):
return self.linker_info_buf.decode('utf8')
@property
def error_log(self):
return self.linker_errors_buf.decode('utf8')
def add_ptx(self, ptx, name='<cudapy-ptx>'):
namebuf = name.encode('utf8')
self._keep_alive += [ptx, namebuf]
try:
input_ptx = binding.CUjitInputType.CU_JIT_INPUT_PTX
driver.cuLinkAddData(self.handle, input_ptx, ptx, len(ptx),
namebuf, 0, [], [])
except CudaAPIError as e:
raise LinkerError("%s\n%s" % (e, self.error_log))
def add_file(self, path, kind):
pathbuf = path.encode("utf8")
self._keep_alive.append(pathbuf)
try:
driver.cuLinkAddFile(self.handle, kind, pathbuf, 0, [], [])
except CudaAPIError as e:
if e.code == binding.CUresult.CUDA_ERROR_FILE_NOT_FOUND:
msg = f'{path} not found'
else:
msg = "%s\n%s" % (e, self.error_log)
raise LinkerError(msg)
def complete(self):
try:
cubin_buf, size = driver.cuLinkComplete(self.handle)
except CudaAPIError as e:
raise LinkerError("%s\n%s" % (e, self.error_log))
assert size > 0, 'linker returned a zero sized cubin'
del self._keep_alive[:]
# We return a copy of the cubin because it's owned by the linker
cubin_ptr = ctypes.cast(cubin_buf, ctypes.POINTER(ctypes.c_char))
return bytes(np.ctypeslib.as_array(cubin_ptr, shape=(size,)))
# -----------------------------------------------------------------------------
def get_devptr_for_active_ctx(ptr):
"""Query the device pointer usable in the current context from an arbitrary
pointer.
"""
if ptr != 0:
if USE_NV_BINDING:
ptr_attrs = binding.CUpointer_attribute
attr = ptr_attrs.CU_POINTER_ATTRIBUTE_DEVICE_POINTER
ptrobj = binding.CUdeviceptr(ptr)
return driver.cuPointerGetAttribute(attr, ptrobj)
else:
devptr = drvapi.cu_device_ptr()
attr = enums.CU_POINTER_ATTRIBUTE_DEVICE_POINTER
driver.cuPointerGetAttribute(byref(devptr), attr, ptr)
return devptr
else:
if USE_NV_BINDING:
return binding.CUdeviceptr()
else:
return drvapi.cu_device_ptr()
def device_extents(devmem):
"""Find the extents (half open begin and end pointer) of the underlying
device memory allocation.
NOTE: it always returns the extents of the allocation but the extents
of the device memory view that can be a subsection of the entire allocation.
"""
devptr = device_ctypes_pointer(devmem)
if USE_NV_BINDING:
s, n = driver.cuMemGetAddressRange(devptr)
return s, binding.CUdeviceptr(int(s) + n)
else:
s = drvapi.cu_device_ptr()
n = c_size_t()
driver.cuMemGetAddressRange(byref(s), byref(n), devptr)
s, n = s.value, n.value
return s, s + n
def device_memory_size(devmem):
"""Check the memory size of the device memory.
The result is cached in the device memory object.
It may query the driver for the memory size of the device memory allocation.
"""
sz = getattr(devmem, '_cuda_memsize_', None)
if sz is None:
s, e = device_extents(devmem)
if USE_NV_BINDING:
sz = int(e) - int(s)
else:
sz = e - s
devmem._cuda_memsize_ = sz
assert sz >= 0, "{} length array".format(sz)
return sz
def _is_datetime_dtype(obj):
"""Returns True if the obj.dtype is datetime64 or timedelta64
"""
dtype = getattr(obj, 'dtype', None)
return dtype is not None and dtype.char in 'Mm'
def _workaround_for_datetime(obj):
"""Workaround for numpy#4983: buffer protocol doesn't support
datetime64 or timedelta64.
"""
if _is_datetime_dtype(obj):
obj = obj.view(np.int64)
return obj
def host_pointer(obj, readonly=False):
"""Get host pointer from an obj.
If `readonly` is False, the buffer must be writable.
NOTE: The underlying data pointer from the host data buffer is used and
it should not be changed until the operation which can be asynchronous
completes.
"""
if isinstance(obj, int):
return obj
forcewritable = False
if not readonly:
forcewritable = isinstance(obj, np.void) or _is_datetime_dtype(obj)
obj = _workaround_for_datetime(obj)
return mviewbuf.memoryview_get_buffer(obj, forcewritable, readonly)
def host_memory_extents(obj):
"Returns (start, end) the start and end pointer of the array (half open)."
obj = _workaround_for_datetime(obj)
return mviewbuf.memoryview_get_extents(obj)
def memory_size_from_info(shape, strides, itemsize):
"""Get the byte size of a contiguous memory buffer given the shape, strides
and itemsize.
"""
assert len(shape) == len(strides), "# dim mismatch"
ndim = len(shape)
s, e = mviewbuf.memoryview_get_extents_info(shape, strides, ndim, itemsize)
return e - s
def host_memory_size(obj):
"Get the size of the memory"
s, e = host_memory_extents(obj)
assert e >= s, "memory extend of negative size"
return e - s
def device_pointer(obj):
"Get the device pointer as an integer"
if USE_NV_BINDING:
return obj.device_ctypes_pointer
else:
return device_ctypes_pointer(obj).value
def device_ctypes_pointer(obj):
"Get the ctypes object for the device pointer"
if obj is None:
return c_void_p(0)
require_device_memory(obj)
return obj.device_ctypes_pointer
def is_device_memory(obj):
"""All CUDA memory object is recognized as an instance with the attribute
"__cuda_memory__" defined and its value evaluated to True.
All CUDA memory object should also define an attribute named
"device_pointer" which value is an int object carrying the pointer
value of the device memory address. This is not tested in this method.
"""
return getattr(obj, '__cuda_memory__', False)
def require_device_memory(obj):
"""A sentry for methods that accept CUDA memory object.
"""
if not is_device_memory(obj):
raise Exception("Not a CUDA memory object.")
def device_memory_depends(devmem, *objs):
"""Add dependencies to the device memory.
Mainly used for creating structures that points to other device memory,
so that the referees are not GC and released.
"""
depset = getattr(devmem, "_depends_", [])
depset.extend(objs)
def host_to_device(dst, src, size, stream=0):
"""
NOTE: The underlying data pointer from the host data buffer is used and
it should not be changed until the operation which can be asynchronous
completes.
"""
varargs = []
if stream:
assert isinstance(stream, Stream)
fn = driver.cuMemcpyHtoDAsync
varargs.append(stream.handle)
else:
fn = driver.cuMemcpyHtoD
fn(device_pointer(dst), host_pointer(src, readonly=True), size, *varargs)
def device_to_host(dst, src, size, stream=0):
"""
NOTE: The underlying data pointer from the host data buffer is used and
it should not be changed until the operation which can be asynchronous
completes.
"""
varargs = []
if stream:
assert isinstance(stream, Stream)
fn = driver.cuMemcpyDtoHAsync
varargs.append(stream.handle)
else:
fn = driver.cuMemcpyDtoH
fn(host_pointer(dst), device_pointer(src), size, *varargs)
def device_to_device(dst, src, size, stream=0):
"""
NOTE: The underlying data pointer from the host data buffer is used and
it should not be changed until the operation which can be asynchronous
completes.
"""
varargs = []
if stream:
assert isinstance(stream, Stream)
fn = driver.cuMemcpyDtoDAsync
varargs.append(stream.handle)
else:
fn = driver.cuMemcpyDtoD
fn(device_pointer(dst), device_pointer(src), size, *varargs)
def device_memset(dst, val, size, stream=0):
"""Memset on the device.
If stream is not zero, asynchronous mode is used.
dst: device memory
val: byte value to be written
size: number of byte to be written
stream: a CUDA stream
"""
varargs = []
if stream:
assert isinstance(stream, Stream)
fn = driver.cuMemsetD8Async
varargs.append(stream.handle)
else:
fn = driver.cuMemsetD8
fn(device_pointer(dst), val, size, *varargs)
def profile_start():
'''
Enable profile collection in the current context.
'''
driver.cuProfilerStart()
def profile_stop():
'''
Disable profile collection in the current context.
'''
driver.cuProfilerStop()
@contextlib.contextmanager
def profiling():
"""
Context manager that enables profiling on entry and disables profiling on
exit.
"""
profile_start()
yield
profile_stop()
def get_version():
"""
Return the driver version as a tuple of (major, minor)
"""
return driver.get_version()