430 lines
13 KiB
Python
430 lines
13 KiB
Python
'''
|
|
The Device Array API is not implemented in the simulator. This module provides
|
|
stubs to allow tests to import correctly.
|
|
'''
|
|
from contextlib import contextmanager
|
|
|
|
import numpy as np
|
|
|
|
|
|
DeviceRecord = None
|
|
from_record_like = None
|
|
|
|
|
|
errmsg_contiguous_buffer = ("Array contains non-contiguous buffer and cannot "
|
|
"be transferred as a single memory region. Please "
|
|
"ensure contiguous buffer with numpy "
|
|
".ascontiguousarray()")
|
|
|
|
|
|
class FakeShape(tuple):
|
|
'''
|
|
The FakeShape class is used to provide a shape which does not allow negative
|
|
indexing, similar to the shape in CUDA Python. (Numpy shape arrays allow
|
|
negative indexing)
|
|
'''
|
|
|
|
def __getitem__(self, k):
|
|
if isinstance(k, int) and k < 0:
|
|
raise IndexError('tuple index out of range')
|
|
return super(FakeShape, self).__getitem__(k)
|
|
|
|
|
|
class FakeWithinKernelCUDAArray(object):
|
|
'''
|
|
Created to emulate the behavior of arrays within kernels, where either
|
|
array.item or array['item'] is valid (that is, give all structured
|
|
arrays `numpy.recarray`-like semantics). This behaviour does not follow
|
|
the semantics of Python and NumPy with non-jitted code, and will be
|
|
deprecated and removed.
|
|
'''
|
|
|
|
def __init__(self, item):
|
|
assert isinstance(item, FakeCUDAArray)
|
|
self.__dict__['_item'] = item
|
|
|
|
def __wrap_if_fake(self, item):
|
|
if isinstance(item, FakeCUDAArray):
|
|
return FakeWithinKernelCUDAArray(item)
|
|
else:
|
|
return item
|
|
|
|
def __getattr__(self, attrname):
|
|
if attrname in dir(self._item._ary): # For e.g. array size.
|
|
return self.__wrap_if_fake(getattr(self._item._ary, attrname))
|
|
else:
|
|
return self.__wrap_if_fake(self._item.__getitem__(attrname))
|
|
|
|
def __setattr__(self, nm, val):
|
|
self._item.__setitem__(nm, val)
|
|
|
|
def __getitem__(self, idx):
|
|
return self.__wrap_if_fake(self._item.__getitem__(idx))
|
|
|
|
def __setitem__(self, idx, val):
|
|
self._item.__setitem__(idx, val)
|
|
|
|
def __len__(self):
|
|
return len(self._item)
|
|
|
|
def __array_ufunc__(self, ufunc, method, *args, **kwargs):
|
|
# ufuncs can only be called directly on instances of numpy.ndarray (not
|
|
# things that implement its interfaces, like the FakeCUDAArray or
|
|
# FakeWithinKernelCUDAArray). For other objects, __array_ufunc__ is
|
|
# called when they are arguments to ufuncs, to provide an opportunity
|
|
# to somehow implement the ufunc. Since the FakeWithinKernelCUDAArray
|
|
# is just a thin wrapper over an ndarray, we can implement all ufuncs
|
|
# by passing the underlying ndarrays to a call to the intended ufunc.
|
|
call = getattr(ufunc, method)
|
|
|
|
def convert_fakes(obj):
|
|
if isinstance(obj, FakeWithinKernelCUDAArray):
|
|
obj = obj._item._ary
|
|
|
|
return obj
|
|
|
|
out = kwargs.get('out')
|
|
if out:
|
|
kwargs['out'] = tuple(convert_fakes(o) for o in out)
|
|
args = tuple(convert_fakes(a) for a in args)
|
|
return call(*args, **kwargs)
|
|
|
|
|
|
class FakeCUDAArray(object):
|
|
'''
|
|
Implements the interface of a DeviceArray/DeviceRecord, but mostly just
|
|
wraps a NumPy array.
|
|
'''
|
|
|
|
__cuda_ndarray__ = True # There must be gpu_data attribute
|
|
|
|
def __init__(self, ary, stream=0):
|
|
self._ary = ary
|
|
self.stream = stream
|
|
|
|
@property
|
|
def alloc_size(self):
|
|
return self._ary.nbytes
|
|
|
|
@property
|
|
def nbytes(self):
|
|
# return nbytes -- FakeCUDAArray is a wrapper around NumPy
|
|
return self._ary.nbytes
|
|
|
|
def __getattr__(self, attrname):
|
|
try:
|
|
attr = getattr(self._ary, attrname)
|
|
return attr
|
|
except AttributeError as e:
|
|
msg = "Wrapped array has no attribute '%s'" % attrname
|
|
raise AttributeError(msg) from e
|
|
|
|
def bind(self, stream=0):
|
|
return FakeCUDAArray(self._ary, stream)
|
|
|
|
@property
|
|
def T(self):
|
|
return self.transpose()
|
|
|
|
def transpose(self, axes=None):
|
|
return FakeCUDAArray(np.transpose(self._ary, axes=axes))
|
|
|
|
def __getitem__(self, idx):
|
|
ret = self._ary.__getitem__(idx)
|
|
if type(ret) not in [np.ndarray, np.void]:
|
|
return ret
|
|
else:
|
|
return FakeCUDAArray(ret, stream=self.stream)
|
|
|
|
def __setitem__(self, idx, val):
|
|
return self._ary.__setitem__(idx, val)
|
|
|
|
def copy_to_host(self, ary=None, stream=0):
|
|
if ary is None:
|
|
ary = np.empty_like(self._ary)
|
|
else:
|
|
check_array_compatibility(self, ary)
|
|
np.copyto(ary, self._ary)
|
|
return ary
|
|
|
|
def copy_to_device(self, ary, stream=0):
|
|
'''
|
|
Copy from the provided array into this array.
|
|
|
|
This may be less forgiving than the CUDA Python implementation, which
|
|
will copy data up to the length of the smallest of the two arrays,
|
|
whereas this expects the size of the arrays to be equal.
|
|
'''
|
|
sentry_contiguous(self)
|
|
self_core, ary_core = array_core(self), array_core(ary)
|
|
if isinstance(ary, FakeCUDAArray):
|
|
sentry_contiguous(ary)
|
|
check_array_compatibility(self_core, ary_core)
|
|
else:
|
|
ary_core = np.array(
|
|
ary_core,
|
|
order='C' if self_core.flags['C_CONTIGUOUS'] else 'F',
|
|
subok=True,
|
|
copy=False)
|
|
check_array_compatibility(self_core, ary_core)
|
|
np.copyto(self_core._ary, ary_core)
|
|
|
|
@property
|
|
def shape(self):
|
|
return FakeShape(self._ary.shape)
|
|
|
|
def ravel(self, *args, **kwargs):
|
|
return FakeCUDAArray(self._ary.ravel(*args, **kwargs))
|
|
|
|
def reshape(self, *args, **kwargs):
|
|
return FakeCUDAArray(self._ary.reshape(*args, **kwargs))
|
|
|
|
def view(self, *args, **kwargs):
|
|
return FakeCUDAArray(self._ary.view(*args, **kwargs))
|
|
|
|
def is_c_contiguous(self):
|
|
return self._ary.flags.c_contiguous
|
|
|
|
def is_f_contiguous(self):
|
|
return self._ary.flags.f_contiguous
|
|
|
|
def __str__(self):
|
|
return str(self._ary)
|
|
|
|
def __repr__(self):
|
|
return repr(self._ary)
|
|
|
|
def __len__(self):
|
|
return len(self._ary)
|
|
|
|
# TODO: Add inplace, bitwise, unary magic methods
|
|
# (or maybe inherit this class from numpy)?
|
|
def __eq__(self, other):
|
|
return FakeCUDAArray(self._ary == other)
|
|
|
|
def __ne__(self, other):
|
|
return FakeCUDAArray(self._ary != other)
|
|
|
|
def __lt__(self, other):
|
|
return FakeCUDAArray(self._ary < other)
|
|
|
|
def __le__(self, other):
|
|
return FakeCUDAArray(self._ary <= other)
|
|
|
|
def __gt__(self, other):
|
|
return FakeCUDAArray(self._ary > other)
|
|
|
|
def __ge__(self, other):
|
|
return FakeCUDAArray(self._ary >= other)
|
|
|
|
def __add__(self, other):
|
|
return FakeCUDAArray(self._ary + other)
|
|
|
|
def __sub__(self, other):
|
|
return FakeCUDAArray(self._ary - other)
|
|
|
|
def __mul__(self, other):
|
|
return FakeCUDAArray(self._ary * other)
|
|
|
|
def __floordiv__(self, other):
|
|
return FakeCUDAArray(self._ary // other)
|
|
|
|
def __truediv__(self, other):
|
|
return FakeCUDAArray(self._ary / other)
|
|
|
|
def __mod__(self, other):
|
|
return FakeCUDAArray(self._ary % other)
|
|
|
|
def __pow__(self, other):
|
|
return FakeCUDAArray(self._ary ** other)
|
|
|
|
def split(self, section, stream=0):
|
|
return [
|
|
FakeCUDAArray(a)
|
|
for a in np.split(self._ary, range(section, len(self), section))
|
|
]
|
|
|
|
|
|
def array_core(ary):
|
|
"""
|
|
Extract the repeated core of a broadcast array.
|
|
|
|
Broadcast arrays are by definition non-contiguous due to repeated
|
|
dimensions, i.e., dimensions with stride 0. In order to ascertain memory
|
|
contiguity and copy the underlying data from such arrays, we must create
|
|
a view without the repeated dimensions.
|
|
|
|
"""
|
|
if not ary.strides or not ary.size:
|
|
return ary
|
|
core_index = []
|
|
for stride in ary.strides:
|
|
core_index.append(0 if stride == 0 else slice(None))
|
|
return ary[tuple(core_index)]
|
|
|
|
|
|
def is_contiguous(ary):
|
|
"""
|
|
Returns True iff `ary` is C-style contiguous while ignoring
|
|
broadcasted and 1-sized dimensions.
|
|
As opposed to array_core(), it does not call require_context(),
|
|
which can be quite expensive.
|
|
"""
|
|
size = ary.dtype.itemsize
|
|
for shape, stride in zip(reversed(ary.shape), reversed(ary.strides)):
|
|
if shape > 1 and stride != 0:
|
|
if size != stride:
|
|
return False
|
|
size *= shape
|
|
return True
|
|
|
|
|
|
def sentry_contiguous(ary):
|
|
core = array_core(ary)
|
|
if not core.flags['C_CONTIGUOUS'] and not core.flags['F_CONTIGUOUS']:
|
|
raise ValueError(errmsg_contiguous_buffer)
|
|
|
|
|
|
def check_array_compatibility(ary1, ary2):
|
|
ary1sq, ary2sq = ary1.squeeze(), ary2.squeeze()
|
|
if ary1.dtype != ary2.dtype:
|
|
raise TypeError('incompatible dtype: %s vs. %s' %
|
|
(ary1.dtype, ary2.dtype))
|
|
if ary1sq.shape != ary2sq.shape:
|
|
raise ValueError('incompatible shape: %s vs. %s' %
|
|
(ary1.shape, ary2.shape))
|
|
if ary1sq.strides != ary2sq.strides:
|
|
raise ValueError('incompatible strides: %s vs. %s' %
|
|
(ary1.strides, ary2.strides))
|
|
|
|
|
|
def to_device(ary, stream=0, copy=True, to=None):
|
|
ary = np.array(ary, copy=False, subok=True)
|
|
sentry_contiguous(ary)
|
|
if to is None:
|
|
buffer_dtype = np.int64 if ary.dtype.char in 'Mm' else ary.dtype
|
|
return FakeCUDAArray(
|
|
np.ndarray(
|
|
buffer=np.copy(array_core(ary)).view(buffer_dtype),
|
|
dtype=ary.dtype,
|
|
shape=ary.shape,
|
|
strides=ary.strides,
|
|
).view(type=type(ary)),
|
|
)
|
|
else:
|
|
to.copy_to_device(ary, stream=stream)
|
|
|
|
|
|
@contextmanager
|
|
def pinned(arg):
|
|
yield
|
|
|
|
|
|
def mapped_array(*args, **kwargs):
|
|
for unused_arg in ('portable', 'wc'):
|
|
if unused_arg in kwargs:
|
|
kwargs.pop(unused_arg)
|
|
return device_array(*args, **kwargs)
|
|
|
|
|
|
def pinned_array(shape, dtype=np.float_, strides=None, order='C'):
|
|
return np.ndarray(shape=shape, strides=strides, dtype=dtype, order=order)
|
|
|
|
|
|
def managed_array(shape, dtype=np.float_, strides=None, order='C'):
|
|
return np.ndarray(shape=shape, strides=strides, dtype=dtype, order=order)
|
|
|
|
|
|
def device_array(*args, **kwargs):
|
|
stream = kwargs.pop('stream') if 'stream' in kwargs else 0
|
|
return FakeCUDAArray(np.ndarray(*args, **kwargs), stream=stream)
|
|
|
|
|
|
def _contiguous_strides_like_array(ary):
|
|
"""
|
|
Given an array, compute strides for a new contiguous array of the same
|
|
shape.
|
|
"""
|
|
# Don't recompute strides if the default strides will be sufficient to
|
|
# create a contiguous array.
|
|
if ary.flags['C_CONTIGUOUS'] or ary.flags['F_CONTIGUOUS'] or ary.ndim <= 1:
|
|
return None
|
|
|
|
# Otherwise, we need to compute new strides using an algorithm adapted from
|
|
# NumPy v1.17.4's PyArray_NewLikeArrayWithShape in
|
|
# core/src/multiarray/ctors.c. We permute the strides in ascending order
|
|
# then compute the stride for the dimensions with the same permutation.
|
|
|
|
# Stride permutation. E.g. a stride array (4, -2, 12) becomes
|
|
# [(1, -2), (0, 4), (2, 12)]
|
|
strideperm = [ x for x in enumerate(ary.strides) ]
|
|
strideperm.sort(key=lambda x: x[1])
|
|
|
|
# Compute new strides using permutation
|
|
strides = [0] * len(ary.strides)
|
|
stride = ary.dtype.itemsize
|
|
for i_perm, _ in strideperm:
|
|
strides[i_perm] = stride
|
|
stride *= ary.shape[i_perm]
|
|
return tuple(strides)
|
|
|
|
|
|
def _order_like_array(ary):
|
|
if ary.flags['F_CONTIGUOUS'] and not ary.flags['C_CONTIGUOUS']:
|
|
return 'F'
|
|
else:
|
|
return 'C'
|
|
|
|
|
|
def device_array_like(ary, stream=0):
|
|
strides = _contiguous_strides_like_array(ary)
|
|
order = _order_like_array(ary)
|
|
return device_array(shape=ary.shape, dtype=ary.dtype, strides=strides,
|
|
order=order)
|
|
|
|
|
|
def pinned_array_like(ary):
|
|
strides = _contiguous_strides_like_array(ary)
|
|
order = _order_like_array(ary)
|
|
return pinned_array(shape=ary.shape, dtype=ary.dtype, strides=strides,
|
|
order=order)
|
|
|
|
|
|
def auto_device(ary, stream=0, copy=True):
|
|
if isinstance(ary, FakeCUDAArray):
|
|
return ary, False
|
|
|
|
if not isinstance(ary, np.void):
|
|
ary = np.array(
|
|
ary,
|
|
copy=False,
|
|
subok=True)
|
|
return to_device(ary, stream, copy), True
|
|
|
|
|
|
def is_cuda_ndarray(obj):
|
|
"Check if an object is a CUDA ndarray"
|
|
return getattr(obj, '__cuda_ndarray__', False)
|
|
|
|
|
|
def verify_cuda_ndarray_interface(obj):
|
|
"Verify the CUDA ndarray interface for an obj"
|
|
require_cuda_ndarray(obj)
|
|
|
|
def requires_attr(attr, typ):
|
|
if not hasattr(obj, attr):
|
|
raise AttributeError(attr)
|
|
if not isinstance(getattr(obj, attr), typ):
|
|
raise AttributeError('%s must be of type %s' % (attr, typ))
|
|
|
|
requires_attr('shape', tuple)
|
|
requires_attr('strides', tuple)
|
|
requires_attr('dtype', np.dtype)
|
|
requires_attr('size', int)
|
|
|
|
|
|
def require_cuda_ndarray(obj):
|
|
"Raises ValueError is is_cuda_ndarray(obj) evaluates False"
|
|
if not is_cuda_ndarray(obj):
|
|
raise ValueError('require an cuda ndarray object')
|