101 lines
1.7 KiB
Python
101 lines
1.7 KiB
Python
"""
|
|
Usecases of recursive functions in the CUDA target, many derived from
|
|
numba/tests/recursion_usecases.py.
|
|
|
|
Some functions are compiled at import time, hence a separate module.
|
|
"""
|
|
|
|
from numba import cuda
|
|
|
|
|
|
@cuda.jit("i8(i8)", device=True)
|
|
def fib1(n):
|
|
if n < 2:
|
|
return n
|
|
# Note the second call does not use a named argument, unlike the CPU target
|
|
# usecase
|
|
return fib1(n - 1) + fib1(n - 2)
|
|
|
|
|
|
def make_fib2():
|
|
@cuda.jit("i8(i8)", device=True)
|
|
def fib2(n):
|
|
if n < 2:
|
|
return n
|
|
return fib2(n - 1) + fib2(n - 2)
|
|
|
|
return fib2
|
|
|
|
|
|
fib2 = make_fib2()
|
|
|
|
|
|
@cuda.jit
|
|
def type_change_self(x, y):
|
|
if x > 1 and y > 0:
|
|
return x + type_change_self(x - y, y)
|
|
else:
|
|
return y
|
|
|
|
|
|
# Implicit signature
|
|
@cuda.jit(device=True)
|
|
def fib3(n):
|
|
if n < 2:
|
|
return n
|
|
|
|
return fib3(n - 1) + fib3(n - 2)
|
|
|
|
|
|
# Run-away self recursion
|
|
@cuda.jit(device=True)
|
|
def runaway_self(x):
|
|
return runaway_self(x)
|
|
|
|
|
|
@cuda.jit(device=True)
|
|
def raise_self(x):
|
|
if x == 1:
|
|
raise ValueError("raise_self")
|
|
elif x > 0:
|
|
return raise_self(x - 1)
|
|
else:
|
|
return 1
|
|
|
|
|
|
@cuda.jit(debug=True, opt=False)
|
|
def raise_self_kernel(x):
|
|
raise_self(x)
|
|
|
|
|
|
def make_optional_return_case(jit=lambda x: x):
|
|
@jit
|
|
def foo(x):
|
|
if x > 5:
|
|
return x - 1
|
|
else:
|
|
return
|
|
|
|
@jit
|
|
def bar(x):
|
|
out = foo(x)
|
|
if out is None:
|
|
return out
|
|
elif out < 8:
|
|
return out
|
|
else:
|
|
return x * bar(out)
|
|
|
|
return bar
|
|
|
|
|
|
def make_growing_tuple_case(jit=lambda x: x):
|
|
# From issue #4387
|
|
@jit
|
|
def make_list(n):
|
|
if n <= 0:
|
|
return None
|
|
|
|
return (n, make_list(n - 1))
|
|
return make_list
|