ai-content-maker/.venv/Lib/site-packages/numba/cuda/tests/cudapy/recursion_usecases.py

101 lines
1.7 KiB
Python

"""
Usecases of recursive functions in the CUDA target, many derived from
numba/tests/recursion_usecases.py.
Some functions are compiled at import time, hence a separate module.
"""
from numba import cuda
@cuda.jit("i8(i8)", device=True)
def fib1(n):
if n < 2:
return n
# Note the second call does not use a named argument, unlike the CPU target
# usecase
return fib1(n - 1) + fib1(n - 2)
def make_fib2():
@cuda.jit("i8(i8)", device=True)
def fib2(n):
if n < 2:
return n
return fib2(n - 1) + fib2(n - 2)
return fib2
fib2 = make_fib2()
@cuda.jit
def type_change_self(x, y):
if x > 1 and y > 0:
return x + type_change_self(x - y, y)
else:
return y
# Implicit signature
@cuda.jit(device=True)
def fib3(n):
if n < 2:
return n
return fib3(n - 1) + fib3(n - 2)
# Run-away self recursion
@cuda.jit(device=True)
def runaway_self(x):
return runaway_self(x)
@cuda.jit(device=True)
def raise_self(x):
if x == 1:
raise ValueError("raise_self")
elif x > 0:
return raise_self(x - 1)
else:
return 1
@cuda.jit(debug=True, opt=False)
def raise_self_kernel(x):
raise_self(x)
def make_optional_return_case(jit=lambda x: x):
@jit
def foo(x):
if x > 5:
return x - 1
else:
return
@jit
def bar(x):
out = foo(x)
if out is None:
return out
elif out < 8:
return out
else:
return x * bar(out)
return bar
def make_growing_tuple_case(jit=lambda x: x):
# From issue #4387
@jit
def make_list(n):
if n <= 0:
return None
return (n, make_list(n - 1))
return make_list