ai-content-maker/.venv/Lib/site-packages/numba/cuda/tests/cudapy/test_blackscholes.py

121 lines
3.9 KiB
Python

import numpy as np
import math
from numba import cuda, double, void
from numba.cuda.testing import unittest, CUDATestCase
RISKFREE = 0.02
VOLATILITY = 0.30
A1 = 0.31938153
A2 = -0.356563782
A3 = 1.781477937
A4 = -1.821255978
A5 = 1.330274429
RSQRT2PI = 0.39894228040143267793994605993438
def cnd(d):
K = 1.0 / (1.0 + 0.2316419 * np.abs(d))
ret_val = (RSQRT2PI * np.exp(-0.5 * d * d) *
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))))
return np.where(d > 0, 1.0 - ret_val, ret_val)
def black_scholes(callResult, putResult, stockPrice, optionStrike, optionYears,
Riskfree, Volatility):
S = stockPrice
X = optionStrike
T = optionYears
R = Riskfree
V = Volatility
sqrtT = np.sqrt(T)
d1 = (np.log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT)
d2 = d1 - V * sqrtT
cndd1 = cnd(d1)
cndd2 = cnd(d2)
expRT = np.exp(- R * T)
callResult[:] = (S * cndd1 - X * expRT * cndd2)
putResult[:] = (X * expRT * (1.0 - cndd2) - S * (1.0 - cndd1))
def randfloat(rand_var, low, high):
return (1.0 - rand_var) * low + rand_var * high
class TestBlackScholes(CUDATestCase):
def test_blackscholes(self):
OPT_N = 400
iterations = 2
stockPrice = randfloat(np.random.random(OPT_N), 5.0, 30.0)
optionStrike = randfloat(np.random.random(OPT_N), 1.0, 100.0)
optionYears = randfloat(np.random.random(OPT_N), 0.25, 10.0)
callResultNumpy = np.zeros(OPT_N)
putResultNumpy = -np.ones(OPT_N)
callResultNumba = np.zeros(OPT_N)
putResultNumba = -np.ones(OPT_N)
# numpy
for i in range(iterations):
black_scholes(callResultNumpy, putResultNumpy, stockPrice,
optionStrike, optionYears, RISKFREE, VOLATILITY)
@cuda.jit(double(double), device=True, inline=True)
def cnd_cuda(d):
K = 1.0 / (1.0 + 0.2316419 * math.fabs(d))
ret_val = (RSQRT2PI * math.exp(-0.5 * d * d) *
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))))
if d > 0:
ret_val = 1.0 - ret_val
return ret_val
@cuda.jit(void(double[:], double[:], double[:], double[:], double[:],
double, double))
def black_scholes_cuda(callResult, putResult, S, X, T, R, V):
i = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x
if i >= S.shape[0]:
return
sqrtT = math.sqrt(T[i])
d1 = ((math.log(S[i] / X[i]) + (R + 0.5 * V * V) * T[i])
/ (V * sqrtT))
d2 = d1 - V * sqrtT
cndd1 = cnd_cuda(d1)
cndd2 = cnd_cuda(d2)
expRT = math.exp((-1. * R) * T[i])
callResult[i] = (S[i] * cndd1 - X[i] * expRT * cndd2)
putResult[i] = (X[i] * expRT * (1.0 - cndd2) - S[i] * (1.0 - cndd1))
# numba
blockdim = 512, 1
griddim = int(math.ceil(float(OPT_N) / blockdim[0])), 1
stream = cuda.stream()
d_callResult = cuda.to_device(callResultNumba, stream)
d_putResult = cuda.to_device(putResultNumba, stream)
d_stockPrice = cuda.to_device(stockPrice, stream)
d_optionStrike = cuda.to_device(optionStrike, stream)
d_optionYears = cuda.to_device(optionYears, stream)
for i in range(iterations):
black_scholes_cuda[griddim, blockdim, stream](
d_callResult, d_putResult, d_stockPrice, d_optionStrike,
d_optionYears, RISKFREE, VOLATILITY)
d_callResult.copy_to_host(callResultNumba, stream)
d_putResult.copy_to_host(putResultNumba, stream)
stream.synchronize()
delta = np.abs(callResultNumpy - callResultNumba)
L1norm = delta.sum() / np.abs(callResultNumpy).sum()
max_abs_err = delta.max()
self.assertTrue(L1norm < 1e-13)
self.assertTrue(max_abs_err < 1e-13)
if __name__ == '__main__':
unittest.main()