95 lines
3.4 KiB
Python
95 lines
3.4 KiB
Python
import numpy as np
|
|
|
|
from numba import cuda, vectorize, guvectorize
|
|
from numba.np.numpy_support import from_dtype
|
|
from numba.cuda.testing import CUDATestCase, skip_on_cudasim
|
|
import unittest
|
|
|
|
|
|
class TestCudaDateTime(CUDATestCase):
|
|
def test_basic_datetime_kernel(self):
|
|
@cuda.jit
|
|
def foo(start, end, delta):
|
|
for i in range(cuda.grid(1), delta.size, cuda.gridsize(1)):
|
|
delta[i] = end[i] - start[i]
|
|
|
|
arr1 = np.arange('2005-02', '2006-02', dtype='datetime64[D]')
|
|
arr2 = arr1 + np.random.randint(0, 10000, arr1.size)
|
|
delta = np.zeros_like(arr1, dtype='timedelta64[D]')
|
|
|
|
foo[1, 32](arr1, arr2, delta)
|
|
|
|
self.assertPreciseEqual(delta, arr2 - arr1)
|
|
|
|
def test_scalar_datetime_kernel(self):
|
|
@cuda.jit
|
|
def foo(dates, target, delta, matches, outdelta):
|
|
for i in range(cuda.grid(1), matches.size, cuda.gridsize(1)):
|
|
matches[i] = dates[i] == target
|
|
outdelta[i] = dates[i] - delta
|
|
arr1 = np.arange('2005-02', '2006-02', dtype='datetime64[D]')
|
|
target = arr1[5] # datetime
|
|
delta = arr1[6] - arr1[5] # timedelta
|
|
matches = np.zeros_like(arr1, dtype=np.bool_)
|
|
outdelta = np.zeros_like(arr1, dtype='datetime64[D]')
|
|
|
|
foo[1, 32](arr1, target, delta, matches, outdelta)
|
|
where = matches.nonzero()
|
|
|
|
self.assertEqual(list(where), [5])
|
|
self.assertPreciseEqual(outdelta, arr1 - delta)
|
|
|
|
@skip_on_cudasim('ufunc API unsupported in the simulator')
|
|
def test_ufunc(self):
|
|
datetime_t = from_dtype(np.dtype('datetime64[D]'))
|
|
|
|
@vectorize([(datetime_t, datetime_t)], target='cuda')
|
|
def timediff(start, end):
|
|
return end - start
|
|
|
|
arr1 = np.arange('2005-02', '2006-02', dtype='datetime64[D]')
|
|
arr2 = arr1 + np.random.randint(0, 10000, arr1.size)
|
|
|
|
delta = timediff(arr1, arr2)
|
|
|
|
self.assertPreciseEqual(delta, arr2 - arr1)
|
|
|
|
@skip_on_cudasim('ufunc API unsupported in the simulator')
|
|
def test_gufunc(self):
|
|
datetime_t = from_dtype(np.dtype('datetime64[D]'))
|
|
timedelta_t = from_dtype(np.dtype('timedelta64[D]'))
|
|
|
|
@guvectorize([(datetime_t, datetime_t, timedelta_t[:])], '(),()->()',
|
|
target='cuda')
|
|
def timediff(start, end, out):
|
|
out[0] = end - start
|
|
|
|
arr1 = np.arange('2005-02', '2006-02', dtype='datetime64[D]')
|
|
arr2 = arr1 + np.random.randint(0, 10000, arr1.size)
|
|
|
|
delta = timediff(arr1, arr2)
|
|
|
|
self.assertPreciseEqual(delta, arr2 - arr1)
|
|
|
|
@skip_on_cudasim('no .copy_to_host() in the simulator')
|
|
def test_datetime_view_as_int64(self):
|
|
arr = np.arange('2005-02', '2006-02', dtype='datetime64[D]')
|
|
darr = cuda.to_device(arr)
|
|
viewed = darr.view(np.int64)
|
|
self.assertPreciseEqual(arr.view(np.int64), viewed.copy_to_host())
|
|
self.assertEqual(viewed.gpu_data, darr.gpu_data)
|
|
|
|
@skip_on_cudasim('no .copy_to_host() in the simulator')
|
|
def test_timedelta_view_as_int64(self):
|
|
arr = np.arange('2005-02', '2006-02', dtype='datetime64[D]')
|
|
arr = arr - (arr - 1)
|
|
self.assertEqual(arr.dtype, np.dtype('timedelta64[D]'))
|
|
darr = cuda.to_device(arr)
|
|
viewed = darr.view(np.int64)
|
|
self.assertPreciseEqual(arr.view(np.int64), viewed.copy_to_host())
|
|
self.assertEqual(viewed.gpu_data, darr.gpu_data)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|