701 lines
26 KiB
Python
701 lines
26 KiB
Python
import numpy as np
|
|
import threading
|
|
|
|
from numba import boolean, config, cuda, float32, float64, int32, int64, void
|
|
from numba.core.errors import TypingError
|
|
from numba.cuda.testing import skip_on_cudasim, unittest, CUDATestCase
|
|
import math
|
|
|
|
|
|
def add(x, y):
|
|
return x + y
|
|
|
|
|
|
def add_kernel(r, x, y):
|
|
r[0] = x + y
|
|
|
|
|
|
@skip_on_cudasim('Specialization not implemented in the simulator')
|
|
class TestDispatcherSpecialization(CUDATestCase):
|
|
def _test_no_double_specialize(self, dispatcher, ty):
|
|
|
|
with self.assertRaises(RuntimeError) as e:
|
|
dispatcher.specialize(ty)
|
|
|
|
self.assertIn('Dispatcher already specialized', str(e.exception))
|
|
|
|
def test_no_double_specialize_sig_same_types(self):
|
|
# Attempting to specialize a kernel jitted with a signature is illegal,
|
|
# even for the same types the kernel is already specialized for.
|
|
@cuda.jit('void(float32[::1])')
|
|
def f(x):
|
|
pass
|
|
|
|
self._test_no_double_specialize(f, float32[::1])
|
|
|
|
def test_no_double_specialize_no_sig_same_types(self):
|
|
# Attempting to specialize an already-specialized kernel is illegal,
|
|
# even for the same types the kernel is already specialized for.
|
|
@cuda.jit
|
|
def f(x):
|
|
pass
|
|
|
|
f_specialized = f.specialize(float32[::1])
|
|
self._test_no_double_specialize(f_specialized, float32[::1])
|
|
|
|
def test_no_double_specialize_sig_diff_types(self):
|
|
# Attempting to specialize a kernel jitted with a signature is illegal.
|
|
@cuda.jit('void(int32[::1])')
|
|
def f(x):
|
|
pass
|
|
|
|
self._test_no_double_specialize(f, float32[::1])
|
|
|
|
def test_no_double_specialize_no_sig_diff_types(self):
|
|
# Attempting to specialize an already-specialized kernel is illegal.
|
|
@cuda.jit
|
|
def f(x):
|
|
pass
|
|
|
|
f_specialized = f.specialize(int32[::1])
|
|
self._test_no_double_specialize(f_specialized, float32[::1])
|
|
|
|
def test_specialize_cache_same(self):
|
|
# Ensure that the same dispatcher is returned for the same argument
|
|
# types, and that different dispatchers are returned for different
|
|
# argument types.
|
|
@cuda.jit
|
|
def f(x):
|
|
pass
|
|
|
|
self.assertEqual(len(f.specializations), 0)
|
|
|
|
f_float32 = f.specialize(float32[::1])
|
|
self.assertEqual(len(f.specializations), 1)
|
|
|
|
f_float32_2 = f.specialize(float32[::1])
|
|
self.assertEqual(len(f.specializations), 1)
|
|
self.assertIs(f_float32, f_float32_2)
|
|
|
|
f_int32 = f.specialize(int32[::1])
|
|
self.assertEqual(len(f.specializations), 2)
|
|
self.assertIsNot(f_int32, f_float32)
|
|
|
|
def test_specialize_cache_same_with_ordering(self):
|
|
# Ensure that the same dispatcher is returned for the same argument
|
|
# types, and that different dispatchers are returned for different
|
|
# argument types, taking into account array ordering and multiple
|
|
# arguments.
|
|
@cuda.jit
|
|
def f(x, y):
|
|
pass
|
|
|
|
self.assertEqual(len(f.specializations), 0)
|
|
|
|
# 'A' order specialization
|
|
f_f32a_f32a = f.specialize(float32[:], float32[:])
|
|
self.assertEqual(len(f.specializations), 1)
|
|
|
|
# 'C' order specialization
|
|
f_f32c_f32c = f.specialize(float32[::1], float32[::1])
|
|
self.assertEqual(len(f.specializations), 2)
|
|
self.assertIsNot(f_f32a_f32a, f_f32c_f32c)
|
|
|
|
# Reuse 'C' order specialization
|
|
f_f32c_f32c_2 = f.specialize(float32[::1], float32[::1])
|
|
self.assertEqual(len(f.specializations), 2)
|
|
self.assertIs(f_f32c_f32c, f_f32c_f32c_2)
|
|
|
|
|
|
class TestDispatcher(CUDATestCase):
|
|
"""Most tests based on those in numba.tests.test_dispatcher."""
|
|
|
|
def test_coerce_input_types(self):
|
|
# Do not allow unsafe conversions if we can still compile other
|
|
# specializations.
|
|
c_add = cuda.jit(add_kernel)
|
|
|
|
# Using a complex128 allows us to represent any result produced by the
|
|
# test
|
|
r = np.zeros(1, dtype=np.complex128)
|
|
|
|
c_add[1, 1](r, 123, 456)
|
|
self.assertEqual(r[0], add(123, 456))
|
|
|
|
c_add[1, 1](r, 12.3, 45.6)
|
|
self.assertEqual(r[0], add(12.3, 45.6))
|
|
|
|
c_add[1, 1](r, 12.3, 45.6j)
|
|
self.assertEqual(r[0], add(12.3, 45.6j))
|
|
|
|
c_add[1, 1](r, 12300000000, 456)
|
|
self.assertEqual(r[0], add(12300000000, 456))
|
|
|
|
# Now force compilation of only a single specialization
|
|
c_add = cuda.jit('(i4[::1], i4, i4)')(add_kernel)
|
|
r = np.zeros(1, dtype=np.int32)
|
|
|
|
c_add[1, 1](r, 123, 456)
|
|
self.assertPreciseEqual(r[0], add(123, 456))
|
|
|
|
@skip_on_cudasim('Simulator ignores signature')
|
|
@unittest.expectedFailure
|
|
def test_coerce_input_types_unsafe(self):
|
|
# Implicit (unsafe) conversion of float to int, originally from
|
|
# test_coerce_input_types. This test presently fails with the CUDA
|
|
# Dispatcher because argument preparation is done by
|
|
# _Kernel._prepare_args, which is currently inflexible with respect to
|
|
# the types it can accept when preparing.
|
|
#
|
|
# This test is marked as xfail until future changes enable this
|
|
# behavior.
|
|
c_add = cuda.jit('(i4[::1], i4, i4)')(add_kernel)
|
|
r = np.zeros(1, dtype=np.int32)
|
|
|
|
c_add[1, 1](r, 12.3, 45.6)
|
|
self.assertPreciseEqual(r[0], add(12, 45))
|
|
|
|
@skip_on_cudasim('Simulator ignores signature')
|
|
def test_coerce_input_types_unsafe_complex(self):
|
|
# Implicit conversion of complex to int disallowed
|
|
c_add = cuda.jit('(i4[::1], i4, i4)')(add_kernel)
|
|
r = np.zeros(1, dtype=np.int32)
|
|
|
|
with self.assertRaises(TypeError):
|
|
c_add[1, 1](r, 12.3, 45.6j)
|
|
|
|
@skip_on_cudasim('Simulator does not track overloads')
|
|
def test_ambiguous_new_version(self):
|
|
"""Test compiling new version in an ambiguous case
|
|
"""
|
|
c_add = cuda.jit(add_kernel)
|
|
|
|
r = np.zeros(1, dtype=np.float64)
|
|
INT = 1
|
|
FLT = 1.5
|
|
|
|
c_add[1, 1](r, INT, FLT)
|
|
self.assertAlmostEqual(r[0], INT + FLT)
|
|
self.assertEqual(len(c_add.overloads), 1)
|
|
|
|
c_add[1, 1](r, FLT, INT)
|
|
self.assertAlmostEqual(r[0], FLT + INT)
|
|
self.assertEqual(len(c_add.overloads), 2)
|
|
|
|
c_add[1, 1](r, FLT, FLT)
|
|
self.assertAlmostEqual(r[0], FLT + FLT)
|
|
self.assertEqual(len(c_add.overloads), 3)
|
|
|
|
# The following call is ambiguous because (int, int) can resolve
|
|
# to (float, int) or (int, float) with equal weight.
|
|
c_add[1, 1](r, 1, 1)
|
|
self.assertAlmostEqual(r[0], INT + INT)
|
|
self.assertEqual(len(c_add.overloads), 4, "didn't compile a new "
|
|
"version")
|
|
|
|
@skip_on_cudasim("Simulator doesn't support concurrent kernels")
|
|
def test_lock(self):
|
|
"""
|
|
Test that (lazy) compiling from several threads at once doesn't
|
|
produce errors (see issue #908).
|
|
"""
|
|
errors = []
|
|
|
|
@cuda.jit
|
|
def foo(r, x):
|
|
r[0] = x + 1
|
|
|
|
def wrapper():
|
|
try:
|
|
r = np.zeros(1, dtype=np.int64)
|
|
foo[1, 1](r, 1)
|
|
self.assertEqual(r[0], 2)
|
|
except Exception as e:
|
|
errors.append(e)
|
|
|
|
threads = [threading.Thread(target=wrapper) for i in range(16)]
|
|
for t in threads:
|
|
t.start()
|
|
for t in threads:
|
|
t.join()
|
|
self.assertFalse(errors)
|
|
|
|
def _test_explicit_signatures(self, sigs):
|
|
f = cuda.jit(sigs)(add_kernel)
|
|
|
|
# Exact signature matches
|
|
r = np.zeros(1, dtype=np.int64)
|
|
f[1, 1](r, 1, 2)
|
|
self.assertPreciseEqual(r[0], 3)
|
|
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, 1.5, 2.5)
|
|
self.assertPreciseEqual(r[0], 4.0)
|
|
|
|
if config.ENABLE_CUDASIM:
|
|
# Pass - we can't check for no conversion on the simulator.
|
|
return
|
|
|
|
# No conversion
|
|
with self.assertRaises(TypeError) as cm:
|
|
r = np.zeros(1, dtype=np.complex128)
|
|
f[1, 1](r, 1j, 1j)
|
|
self.assertIn("No matching definition", str(cm.exception))
|
|
self.assertEqual(len(f.overloads), 2, f.overloads)
|
|
|
|
def test_explicit_signatures_strings(self):
|
|
# Check with a list of strings for signatures
|
|
sigs = ["(int64[::1], int64, int64)",
|
|
"(float64[::1], float64, float64)"]
|
|
self._test_explicit_signatures(sigs)
|
|
|
|
def test_explicit_signatures_tuples(self):
|
|
# Check with a list of tuples of argument types for signatures
|
|
sigs = [(int64[::1], int64, int64), (float64[::1], float64, float64)]
|
|
self._test_explicit_signatures(sigs)
|
|
|
|
def test_explicit_signatures_signatures(self):
|
|
# Check with a list of Signature objects for signatures
|
|
sigs = [void(int64[::1], int64, int64),
|
|
void(float64[::1], float64, float64)]
|
|
self._test_explicit_signatures(sigs)
|
|
|
|
def test_explicit_signatures_mixed(self):
|
|
# Check when we mix types of signature objects in a list of signatures
|
|
|
|
# Tuple and string
|
|
sigs = [(int64[::1], int64, int64),
|
|
"(float64[::1], float64, float64)"]
|
|
self._test_explicit_signatures(sigs)
|
|
|
|
# Tuple and Signature object
|
|
sigs = [(int64[::1], int64, int64),
|
|
void(float64[::1], float64, float64)]
|
|
self._test_explicit_signatures(sigs)
|
|
|
|
# Signature object and string
|
|
sigs = [void(int64[::1], int64, int64),
|
|
"(float64[::1], float64, float64)"]
|
|
self._test_explicit_signatures(sigs)
|
|
|
|
def test_explicit_signatures_same_type_class(self):
|
|
# A more interesting one...
|
|
# (Note that the type of r is deliberately float64 in both cases so
|
|
# that dispatch is differentiated on the types of x and y only, to
|
|
# closely preserve the intent of the original test from
|
|
# numba.tests.test_dispatcher)
|
|
sigs = ["(float64[::1], float32, float32)",
|
|
"(float64[::1], float64, float64)"]
|
|
f = cuda.jit(sigs)(add_kernel)
|
|
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, np.float32(1), np.float32(2**-25))
|
|
self.assertPreciseEqual(r[0], 1.0)
|
|
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, 1, 2**-25)
|
|
self.assertPreciseEqual(r[0], 1.0000000298023224)
|
|
|
|
@skip_on_cudasim('No overload resolution in the simulator')
|
|
def test_explicit_signatures_ambiguous_resolution(self):
|
|
# Fail to resolve ambiguity between the two best overloads
|
|
# (Also deliberate float64[::1] for the first argument in all cases)
|
|
f = cuda.jit(["(float64[::1], float32, float64)",
|
|
"(float64[::1], float64, float32)",
|
|
"(float64[::1], int64, int64)"])(add_kernel)
|
|
with self.assertRaises(TypeError) as cm:
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, 1.0, 2.0)
|
|
|
|
# The two best matches are output in the error message, as well
|
|
# as the actual argument types.
|
|
self.assertRegex(
|
|
str(cm.exception),
|
|
r"Ambiguous overloading for <function add_kernel [^>]*> "
|
|
r"\(Array\(float64, 1, 'C', False, aligned=True\), float64,"
|
|
r" float64\):\n"
|
|
r"\(Array\(float64, 1, 'C', False, aligned=True\), float32,"
|
|
r" float64\) -> none\n"
|
|
r"\(Array\(float64, 1, 'C', False, aligned=True\), float64,"
|
|
r" float32\) -> none"
|
|
)
|
|
# The integer signature is not part of the best matches
|
|
self.assertNotIn("int64", str(cm.exception))
|
|
|
|
@skip_on_cudasim('Simulator does not use _prepare_args')
|
|
@unittest.expectedFailure
|
|
def test_explicit_signatures_unsafe(self):
|
|
# These tests are from test_explicit_signatures, but have to be xfail
|
|
# at present because _prepare_args in the CUDA target cannot handle
|
|
# unsafe conversions of arguments.
|
|
f = cuda.jit("(int64[::1], int64, int64)")(add_kernel)
|
|
r = np.zeros(1, dtype=np.int64)
|
|
|
|
# Approximate match (unsafe conversion)
|
|
f[1, 1](r, 1.5, 2.5)
|
|
self.assertPreciseEqual(r[0], 3)
|
|
self.assertEqual(len(f.overloads), 1, f.overloads)
|
|
|
|
sigs = ["(int64[::1], int64, int64)",
|
|
"(float64[::1], float64, float64)"]
|
|
f = cuda.jit(sigs)(add_kernel)
|
|
r = np.zeros(1, dtype=np.float64)
|
|
# Approximate match (int32 -> float64 is a safe conversion)
|
|
f[1, 1](r, np.int32(1), 2.5)
|
|
self.assertPreciseEqual(r[0], 3.5)
|
|
|
|
def add_device_usecase(self, sigs):
|
|
# Generate a kernel that calls the add device function compiled with a
|
|
# given set of signatures
|
|
add_device = cuda.jit(sigs, device=True)(add)
|
|
|
|
@cuda.jit
|
|
def f(r, x, y):
|
|
r[0] = add_device(x, y)
|
|
|
|
return f
|
|
|
|
def test_explicit_signatures_device(self):
|
|
# Tests similar to test_explicit_signatures, but on a device function
|
|
# instead of a kernel
|
|
sigs = ["(int64, int64)", "(float64, float64)"]
|
|
f = self.add_device_usecase(sigs)
|
|
|
|
# Exact signature matches
|
|
r = np.zeros(1, dtype=np.int64)
|
|
f[1, 1](r, 1, 2)
|
|
self.assertPreciseEqual(r[0], 3)
|
|
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, 1.5, 2.5)
|
|
self.assertPreciseEqual(r[0], 4.0)
|
|
|
|
if config.ENABLE_CUDASIM:
|
|
# Pass - we can't check for no conversion on the simulator.
|
|
return
|
|
|
|
# No conversion
|
|
with self.assertRaises(TypingError) as cm:
|
|
r = np.zeros(1, dtype=np.complex128)
|
|
f[1, 1](r, 1j, 1j)
|
|
|
|
msg = str(cm.exception)
|
|
self.assertIn("Invalid use of type", msg)
|
|
self.assertIn("with parameters (complex128, complex128)", msg)
|
|
self.assertEqual(len(f.overloads), 2, f.overloads)
|
|
|
|
def test_explicit_signatures_device_same_type_class(self):
|
|
# A more interesting one...
|
|
# (Note that the type of r is deliberately float64 in both cases so
|
|
# that dispatch is differentiated on the types of x and y only, to
|
|
# closely preserve the intent of the original test from
|
|
# numba.tests.test_dispatcher)
|
|
sigs = ["(float32, float32)", "(float64, float64)"]
|
|
f = self.add_device_usecase(sigs)
|
|
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, np.float32(1), np.float32(2**-25))
|
|
self.assertPreciseEqual(r[0], 1.0)
|
|
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, 1, 2**-25)
|
|
self.assertPreciseEqual(r[0], 1.0000000298023224)
|
|
|
|
def test_explicit_signatures_device_ambiguous(self):
|
|
# Ambiguity between the two best overloads resolves. This is somewhat
|
|
# surprising given that ambiguity is not permitted for dispatching
|
|
# overloads when launching a kernel, but seems to be the general
|
|
# behaviour of Numba (See Issue #8307:
|
|
# https://github.com/numba/numba/issues/8307).
|
|
sigs = ["(float32, float64)", "(float64, float32)", "(int64, int64)"]
|
|
f = self.add_device_usecase(sigs)
|
|
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, 1.5, 2.5)
|
|
self.assertPreciseEqual(r[0], 4.0)
|
|
|
|
@skip_on_cudasim('CUDA Simulator does not force casting')
|
|
def test_explicit_signatures_device_unsafe(self):
|
|
# These tests are from test_explicit_signatures. The device function
|
|
# variant of these tests can succeed on CUDA because the compilation
|
|
# can handle unsafe casting (c.f. test_explicit_signatures_unsafe which
|
|
# has to xfail due to _prepare_args not supporting unsafe casting).
|
|
sigs = ["(int64, int64)"]
|
|
f = self.add_device_usecase(sigs)
|
|
|
|
# Approximate match (unsafe conversion)
|
|
r = np.zeros(1, dtype=np.int64)
|
|
f[1, 1](r, 1.5, 2.5)
|
|
self.assertPreciseEqual(r[0], 3)
|
|
self.assertEqual(len(f.overloads), 1, f.overloads)
|
|
|
|
sigs = ["(int64, int64)", "(float64, float64)"]
|
|
f = self.add_device_usecase(sigs)
|
|
|
|
# Approximate match (int32 -> float64 is a safe conversion)
|
|
r = np.zeros(1, dtype=np.float64)
|
|
f[1, 1](r, np.int32(1), 2.5)
|
|
self.assertPreciseEqual(r[0], 3.5)
|
|
|
|
def test_dispatcher_docstring(self):
|
|
# Ensure that CUDA-jitting a function preserves its docstring. See
|
|
# Issue #5902: https://github.com/numba/numba/issues/5902
|
|
|
|
@cuda.jit
|
|
def add_kernel(a, b):
|
|
"""Add two integers, kernel version"""
|
|
|
|
@cuda.jit(device=True)
|
|
def add_device(a, b):
|
|
"""Add two integers, device version"""
|
|
|
|
self.assertEqual("Add two integers, kernel version", add_kernel.__doc__)
|
|
self.assertEqual("Add two integers, device version", add_device.__doc__)
|
|
|
|
|
|
@skip_on_cudasim("CUDA simulator doesn't implement kernel properties")
|
|
class TestDispatcherKernelProperties(CUDATestCase):
|
|
def test_get_regs_per_thread_unspecialized(self):
|
|
# A kernel where the register usage per thread is likely to differ
|
|
# between different specializations
|
|
@cuda.jit
|
|
def pi_sin_array(x, n):
|
|
i = cuda.grid(1)
|
|
if i < n:
|
|
x[i] = 3.14 * math.sin(x[i])
|
|
|
|
# Call the kernel with different arguments to create two different
|
|
# definitions within the Dispatcher object
|
|
N = 10
|
|
arr_f32 = np.zeros(N, dtype=np.float32)
|
|
arr_f64 = np.zeros(N, dtype=np.float64)
|
|
|
|
pi_sin_array[1, N](arr_f32, N)
|
|
pi_sin_array[1, N](arr_f64, N)
|
|
|
|
# Check we get a positive integer for the two different variations
|
|
sig_f32 = void(float32[::1], int64)
|
|
sig_f64 = void(float64[::1], int64)
|
|
regs_per_thread_f32 = pi_sin_array.get_regs_per_thread(sig_f32)
|
|
regs_per_thread_f64 = pi_sin_array.get_regs_per_thread(sig_f64)
|
|
|
|
self.assertIsInstance(regs_per_thread_f32, int)
|
|
self.assertIsInstance(regs_per_thread_f64, int)
|
|
|
|
self.assertGreater(regs_per_thread_f32, 0)
|
|
self.assertGreater(regs_per_thread_f64, 0)
|
|
|
|
# Check that getting the registers per thread for all signatures
|
|
# provides the same values as getting the registers per thread for
|
|
# individual signatures.
|
|
regs_per_thread_all = pi_sin_array.get_regs_per_thread()
|
|
self.assertEqual(regs_per_thread_all[sig_f32.args],
|
|
regs_per_thread_f32)
|
|
self.assertEqual(regs_per_thread_all[sig_f64.args],
|
|
regs_per_thread_f64)
|
|
|
|
if regs_per_thread_f32 == regs_per_thread_f64:
|
|
# If the register usage is the same for both variants, there may be
|
|
# a bug, but this may also be an artifact of the compiler / driver
|
|
# / device combination, so produce an informational message only.
|
|
print('f32 and f64 variant thread usages are equal.')
|
|
print('This may warrant some investigation. Devices:')
|
|
cuda.detect()
|
|
|
|
def test_get_regs_per_thread_specialized(self):
|
|
@cuda.jit(void(float32[::1], int64))
|
|
def pi_sin_array(x, n):
|
|
i = cuda.grid(1)
|
|
if i < n:
|
|
x[i] = 3.14 * math.sin(x[i])
|
|
|
|
# Check we get a positive integer for the specialized variation
|
|
regs_per_thread = pi_sin_array.get_regs_per_thread()
|
|
self.assertIsInstance(regs_per_thread, int)
|
|
self.assertGreater(regs_per_thread, 0)
|
|
|
|
def test_get_const_mem_unspecialized(self):
|
|
@cuda.jit
|
|
def const_fmt_string(val, to_print):
|
|
# We guard the print with a conditional to prevent noise from the
|
|
# test suite
|
|
if to_print:
|
|
print(val)
|
|
|
|
# Call the kernel with different arguments to create two different
|
|
# definitions within the Dispatcher object
|
|
const_fmt_string[1, 1](1, False)
|
|
const_fmt_string[1, 1](1.0, False)
|
|
|
|
# Check we get a positive integer for the two different variations
|
|
sig_i64 = void(int64, boolean)
|
|
sig_f64 = void(float64, boolean)
|
|
const_mem_size_i64 = const_fmt_string.get_const_mem_size(sig_i64)
|
|
const_mem_size_f64 = const_fmt_string.get_const_mem_size(sig_f64)
|
|
|
|
self.assertIsInstance(const_mem_size_i64, int)
|
|
self.assertIsInstance(const_mem_size_f64, int)
|
|
|
|
# 6 bytes for the equivalent of b'%lld\n\0'
|
|
self.assertGreaterEqual(const_mem_size_i64, 6)
|
|
# 4 bytes for the equivalent of b'%f\n\0'
|
|
self.assertGreaterEqual(const_mem_size_f64, 4)
|
|
|
|
# Check that getting the const memory size for all signatures
|
|
# provides the same values as getting the const memory size for
|
|
# individual signatures.
|
|
|
|
const_mem_size_all = const_fmt_string.get_const_mem_size()
|
|
self.assertEqual(const_mem_size_all[sig_i64.args], const_mem_size_i64)
|
|
self.assertEqual(const_mem_size_all[sig_f64.args], const_mem_size_f64)
|
|
|
|
def test_get_const_mem_specialized(self):
|
|
arr = np.arange(32, dtype=np.int64)
|
|
sig = void(int64[::1])
|
|
|
|
@cuda.jit(sig)
|
|
def const_array_use(x):
|
|
C = cuda.const.array_like(arr)
|
|
i = cuda.grid(1)
|
|
x[i] = C[i]
|
|
|
|
const_mem_size = const_array_use.get_const_mem_size(sig)
|
|
self.assertIsInstance(const_mem_size, int)
|
|
self.assertGreaterEqual(const_mem_size, arr.nbytes)
|
|
|
|
def test_get_shared_mem_per_block_unspecialized(self):
|
|
N = 10
|
|
|
|
# A kernel where the shared memory per block is likely to differ
|
|
# between different specializations
|
|
@cuda.jit
|
|
def simple_smem(ary):
|
|
sm = cuda.shared.array(N, dtype=ary.dtype)
|
|
for j in range(N):
|
|
sm[j] = j
|
|
for j in range(N):
|
|
ary[j] = sm[j]
|
|
|
|
# Call the kernel with different arguments to create two different
|
|
# definitions within the Dispatcher object
|
|
arr_f32 = np.zeros(N, dtype=np.float32)
|
|
arr_f64 = np.zeros(N, dtype=np.float64)
|
|
|
|
simple_smem[1, 1](arr_f32)
|
|
simple_smem[1, 1](arr_f64)
|
|
|
|
sig_f32 = void(float32[::1])
|
|
sig_f64 = void(float64[::1])
|
|
|
|
sh_mem_f32 = simple_smem.get_shared_mem_per_block(sig_f32)
|
|
sh_mem_f64 = simple_smem.get_shared_mem_per_block(sig_f64)
|
|
|
|
self.assertIsInstance(sh_mem_f32, int)
|
|
self.assertIsInstance(sh_mem_f64, int)
|
|
|
|
self.assertEqual(sh_mem_f32, N * 4)
|
|
self.assertEqual(sh_mem_f64, N * 8)
|
|
|
|
# Check that getting the shared memory per block for all signatures
|
|
# provides the same values as getting the shared mem per block for
|
|
# individual signatures.
|
|
sh_mem_f32_all = simple_smem.get_shared_mem_per_block()
|
|
sh_mem_f64_all = simple_smem.get_shared_mem_per_block()
|
|
self.assertEqual(sh_mem_f32_all[sig_f32.args], sh_mem_f32)
|
|
self.assertEqual(sh_mem_f64_all[sig_f64.args], sh_mem_f64)
|
|
|
|
def test_get_shared_mem_per_block_specialized(self):
|
|
@cuda.jit(void(float32[::1]))
|
|
def simple_smem(ary):
|
|
sm = cuda.shared.array(100, dtype=float32)
|
|
i = cuda.grid(1)
|
|
if i == 0:
|
|
for j in range(100):
|
|
sm[j] = j
|
|
cuda.syncthreads()
|
|
ary[i] = sm[i]
|
|
|
|
shared_mem_per_block = simple_smem.get_shared_mem_per_block()
|
|
self.assertIsInstance(shared_mem_per_block, int)
|
|
self.assertEqual(shared_mem_per_block, 400)
|
|
|
|
def test_get_max_threads_per_block_unspecialized(self):
|
|
N = 10
|
|
|
|
@cuda.jit
|
|
def simple_maxthreads(ary):
|
|
i = cuda.grid(1)
|
|
ary[i] = i
|
|
|
|
arr_f32 = np.zeros(N, dtype=np.float32)
|
|
simple_maxthreads[1, 1](arr_f32)
|
|
sig_f32 = void(float32[::1])
|
|
max_threads_f32 = simple_maxthreads.get_max_threads_per_block(sig_f32)
|
|
|
|
self.assertIsInstance(max_threads_f32, int)
|
|
self.assertGreater(max_threads_f32, 0)
|
|
|
|
max_threads_f32_all = simple_maxthreads.get_max_threads_per_block()
|
|
self.assertEqual(max_threads_f32_all[sig_f32.args], max_threads_f32)
|
|
|
|
def test_get_local_mem_per_thread_unspecialized(self):
|
|
# NOTE: A large amount of local memory must be allocated
|
|
# otherwise the compiler will optimize out the call to
|
|
# cuda.local.array and use local registers instead
|
|
N = 1000
|
|
|
|
@cuda.jit
|
|
def simple_lmem(ary):
|
|
lm = cuda.local.array(N, dtype=ary.dtype)
|
|
for j in range(N):
|
|
lm[j] = j
|
|
for j in range(N):
|
|
ary[j] = lm[j]
|
|
|
|
# Call the kernel with different arguments to create two different
|
|
# definitions within the Dispatcher object
|
|
arr_f32 = np.zeros(N, dtype=np.float32)
|
|
arr_f64 = np.zeros(N, dtype=np.float64)
|
|
|
|
simple_lmem[1, 1](arr_f32)
|
|
simple_lmem[1, 1](arr_f64)
|
|
|
|
sig_f32 = void(float32[::1])
|
|
sig_f64 = void(float64[::1])
|
|
local_mem_f32 = simple_lmem.get_local_mem_per_thread(sig_f32)
|
|
local_mem_f64 = simple_lmem.get_local_mem_per_thread(sig_f64)
|
|
self.assertIsInstance(local_mem_f32, int)
|
|
self.assertIsInstance(local_mem_f64, int)
|
|
|
|
self.assertGreaterEqual(local_mem_f32, N * 4)
|
|
self.assertGreaterEqual(local_mem_f64, N * 8)
|
|
|
|
# Check that getting the local memory per thread for all signatures
|
|
# provides the same values as getting the shared mem per block for
|
|
# individual signatures.
|
|
local_mem_all = simple_lmem.get_local_mem_per_thread()
|
|
self.assertEqual(local_mem_all[sig_f32.args], local_mem_f32)
|
|
self.assertEqual(local_mem_all[sig_f64.args], local_mem_f64)
|
|
|
|
def test_get_local_mem_per_thread_specialized(self):
|
|
# NOTE: A large amount of local memory must be allocated
|
|
# otherwise the compiler will optimize out the call to
|
|
# cuda.local.array and use local registers instead
|
|
N = 1000
|
|
|
|
@cuda.jit(void(float32[::1]))
|
|
def simple_lmem(ary):
|
|
lm = cuda.local.array(N, dtype=ary.dtype)
|
|
for j in range(N):
|
|
lm[j] = j
|
|
for j in range(N):
|
|
ary[j] = lm[j]
|
|
|
|
local_mem_per_thread = simple_lmem.get_local_mem_per_thread()
|
|
self.assertIsInstance(local_mem_per_thread, int)
|
|
self.assertGreaterEqual(local_mem_per_thread, N * 4)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|