ai-content-maker/.venv/Lib/site-packages/numba/cuda/tests/cudapy/test_sm.py

445 lines
14 KiB
Python

from numba import cuda, int32, float64, void
from numba.core.errors import TypingError
from numba.core import types
from numba.cuda.testing import unittest, CUDATestCase, skip_on_cudasim
import numpy as np
from numba.np import numpy_support as nps
from .extensions_usecases import test_struct_model_type, TestStruct
recordwith2darray = np.dtype([('i', np.int32),
('j', np.float32, (3, 2))])
class TestSharedMemoryIssue(CUDATestCase):
def test_issue_953_sm_linkage_conflict(self):
@cuda.jit(device=True)
def inner():
inner_arr = cuda.shared.array(1, dtype=int32) # noqa: F841
@cuda.jit
def outer():
outer_arr = cuda.shared.array(1, dtype=int32) # noqa: F841
inner()
outer[1, 1]()
def _check_shared_array_size(self, shape, expected):
@cuda.jit
def s(a):
arr = cuda.shared.array(shape, dtype=int32)
a[0] = arr.size
result = np.zeros(1, dtype=np.int32)
s[1, 1](result)
self.assertEqual(result[0], expected)
def test_issue_1051_shared_size_broken_1d(self):
self._check_shared_array_size(2, 2)
def test_issue_1051_shared_size_broken_2d(self):
self._check_shared_array_size((2, 3), 6)
def test_issue_1051_shared_size_broken_3d(self):
self._check_shared_array_size((2, 3, 4), 24)
def _check_shared_array_size_fp16(self, shape, expected, ty):
@cuda.jit
def s(a):
arr = cuda.shared.array(shape, dtype=ty)
a[0] = arr.size
result = np.zeros(1, dtype=np.float16)
s[1, 1](result)
self.assertEqual(result[0], expected)
def test_issue_fp16_support(self):
self._check_shared_array_size_fp16(2, 2, types.float16)
self._check_shared_array_size_fp16(2, 2, np.float16)
def test_issue_2393(self):
"""
Test issue of warp misalign address due to nvvm not knowing the
alignment(? but it should have taken the natural alignment of the type)
"""
num_weights = 2
num_blocks = 48
examples_per_block = 4
threads_per_block = 1
@cuda.jit
def costs_func(d_block_costs):
s_features = cuda.shared.array((examples_per_block, num_weights),
float64)
s_initialcost = cuda.shared.array(7, float64) # Bug
threadIdx = cuda.threadIdx.x
prediction = 0
for j in range(num_weights):
prediction += s_features[threadIdx, j]
d_block_costs[0] = s_initialcost[0] + prediction
block_costs = np.zeros(num_blocks, dtype=np.float64)
d_block_costs = cuda.to_device(block_costs)
costs_func[num_blocks, threads_per_block](d_block_costs)
cuda.synchronize()
class TestSharedMemory(CUDATestCase):
def _test_shared(self, arr):
# Use a kernel that copies via shared memory to check loading and
# storing different dtypes with shared memory. All threads in a block
# collaborate to load in values, then the output values are written
# only by the first thread in the block after synchronization.
nelem = len(arr)
nthreads = 16
nblocks = int(nelem / nthreads)
dt = nps.from_dtype(arr.dtype)
@cuda.jit
def use_sm_chunk_copy(x, y):
sm = cuda.shared.array(nthreads, dtype=dt)
tx = cuda.threadIdx.x
bx = cuda.blockIdx.x
bd = cuda.blockDim.x
# Load this block's chunk into shared
i = bx * bd + tx
if i < len(x):
sm[tx] = x[i]
cuda.syncthreads()
# One thread per block writes this block's chunk
if tx == 0:
for j in range(nthreads):
y[bd * bx + j] = sm[j]
d_result = cuda.device_array_like(arr)
use_sm_chunk_copy[nblocks, nthreads](arr, d_result)
host_result = d_result.copy_to_host()
np.testing.assert_array_equal(arr, host_result)
def test_shared_recarray(self):
arr = np.recarray(128, dtype=recordwith2darray)
for x in range(len(arr)):
arr[x].i = x
j = np.arange(3 * 2, dtype=np.float32)
arr[x].j = j.reshape(3, 2) * x
self._test_shared(arr)
def test_shared_bool(self):
arr = np.random.randint(2, size=(1024,), dtype=np.bool_)
self._test_shared(arr)
def _test_dynshared_slice(self, func, arr, expected):
# Check that slices of shared memory are correct
# (See Bug #5073 - prior to the addition of these tests and
# corresponding fix, slices of dynamic shared arrays all aliased each
# other)
nshared = arr.size * arr.dtype.itemsize
func[1, 1, 0, nshared](arr)
np.testing.assert_array_equal(expected, arr)
def test_dynshared_slice_write(self):
# Test writing values into disjoint slices of dynamic shared memory
@cuda.jit
def slice_write(x):
dynsmem = cuda.shared.array(0, dtype=int32)
sm1 = dynsmem[0:1]
sm2 = dynsmem[1:2]
sm1[0] = 1
sm2[0] = 2
x[0] = dynsmem[0]
x[1] = dynsmem[1]
arr = np.zeros(2, dtype=np.int32)
expected = np.array([1, 2], dtype=np.int32)
self._test_dynshared_slice(slice_write, arr, expected)
def test_dynshared_slice_read(self):
# Test reading values from disjoint slices of dynamic shared memory
@cuda.jit
def slice_read(x):
dynsmem = cuda.shared.array(0, dtype=int32)
sm1 = dynsmem[0:1]
sm2 = dynsmem[1:2]
dynsmem[0] = 1
dynsmem[1] = 2
x[0] = sm1[0]
x[1] = sm2[0]
arr = np.zeros(2, dtype=np.int32)
expected = np.array([1, 2], dtype=np.int32)
self._test_dynshared_slice(slice_read, arr, expected)
def test_dynshared_slice_diff_sizes(self):
# Test reading values from disjoint slices of dynamic shared memory
# with different sizes
@cuda.jit
def slice_diff_sizes(x):
dynsmem = cuda.shared.array(0, dtype=int32)
sm1 = dynsmem[0:1]
sm2 = dynsmem[1:3]
dynsmem[0] = 1
dynsmem[1] = 2
dynsmem[2] = 3
x[0] = sm1[0]
x[1] = sm2[0]
x[2] = sm2[1]
arr = np.zeros(3, dtype=np.int32)
expected = np.array([1, 2, 3], dtype=np.int32)
self._test_dynshared_slice(slice_diff_sizes, arr, expected)
def test_dynshared_slice_overlap(self):
# Test reading values from overlapping slices of dynamic shared memory
@cuda.jit
def slice_overlap(x):
dynsmem = cuda.shared.array(0, dtype=int32)
sm1 = dynsmem[0:2]
sm2 = dynsmem[1:4]
dynsmem[0] = 1
dynsmem[1] = 2
dynsmem[2] = 3
dynsmem[3] = 4
x[0] = sm1[0]
x[1] = sm1[1]
x[2] = sm2[0]
x[3] = sm2[1]
x[4] = sm2[2]
arr = np.zeros(5, dtype=np.int32)
expected = np.array([1, 2, 2, 3, 4], dtype=np.int32)
self._test_dynshared_slice(slice_overlap, arr, expected)
def test_dynshared_slice_gaps(self):
# Test writing values to slices of dynamic shared memory doesn't write
# outside the slice
@cuda.jit
def slice_gaps(x):
dynsmem = cuda.shared.array(0, dtype=int32)
sm1 = dynsmem[1:3]
sm2 = dynsmem[4:6]
# Initial values for dynamic shared memory, some to be overwritten
dynsmem[0] = 99
dynsmem[1] = 99
dynsmem[2] = 99
dynsmem[3] = 99
dynsmem[4] = 99
dynsmem[5] = 99
dynsmem[6] = 99
sm1[0] = 1
sm1[1] = 2
sm2[0] = 3
sm2[1] = 4
x[0] = dynsmem[0]
x[1] = dynsmem[1]
x[2] = dynsmem[2]
x[3] = dynsmem[3]
x[4] = dynsmem[4]
x[5] = dynsmem[5]
x[6] = dynsmem[6]
arr = np.zeros(7, dtype=np.int32)
expected = np.array([99, 1, 2, 99, 3, 4, 99], dtype=np.int32)
self._test_dynshared_slice(slice_gaps, arr, expected)
def test_dynshared_slice_write_backwards(self):
# Test writing values into disjoint slices of dynamic shared memory
# with negative steps
@cuda.jit
def slice_write_backwards(x):
dynsmem = cuda.shared.array(0, dtype=int32)
sm1 = dynsmem[1::-1]
sm2 = dynsmem[3:1:-1]
sm1[0] = 1
sm1[1] = 2
sm2[0] = 3
sm2[1] = 4
x[0] = dynsmem[0]
x[1] = dynsmem[1]
x[2] = dynsmem[2]
x[3] = dynsmem[3]
arr = np.zeros(4, dtype=np.int32)
expected = np.array([2, 1, 4, 3], dtype=np.int32)
self._test_dynshared_slice(slice_write_backwards, arr, expected)
def test_dynshared_slice_nonunit_stride(self):
# Test writing values into slice of dynamic shared memory with
# non-unit stride
@cuda.jit
def slice_nonunit_stride(x):
dynsmem = cuda.shared.array(0, dtype=int32)
sm1 = dynsmem[::2]
# Initial values for dynamic shared memory, some to be overwritten
dynsmem[0] = 99
dynsmem[1] = 99
dynsmem[2] = 99
dynsmem[3] = 99
dynsmem[4] = 99
dynsmem[5] = 99
sm1[0] = 1
sm1[1] = 2
sm1[2] = 3
x[0] = dynsmem[0]
x[1] = dynsmem[1]
x[2] = dynsmem[2]
x[3] = dynsmem[3]
x[4] = dynsmem[4]
x[5] = dynsmem[5]
arr = np.zeros(6, dtype=np.int32)
expected = np.array([1, 99, 2, 99, 3, 99], dtype=np.int32)
self._test_dynshared_slice(slice_nonunit_stride, arr, expected)
def test_dynshared_slice_nonunit_reverse_stride(self):
# Test writing values into slice of dynamic shared memory with
# reverse non-unit stride
@cuda.jit
def slice_nonunit_reverse_stride(x):
dynsmem = cuda.shared.array(0, dtype=int32)
sm1 = dynsmem[-1::-2]
# Initial values for dynamic shared memory, some to be overwritten
dynsmem[0] = 99
dynsmem[1] = 99
dynsmem[2] = 99
dynsmem[3] = 99
dynsmem[4] = 99
dynsmem[5] = 99
sm1[0] = 1
sm1[1] = 2
sm1[2] = 3
x[0] = dynsmem[0]
x[1] = dynsmem[1]
x[2] = dynsmem[2]
x[3] = dynsmem[3]
x[4] = dynsmem[4]
x[5] = dynsmem[5]
arr = np.zeros(6, dtype=np.int32)
expected = np.array([99, 3, 99, 2, 99, 1], dtype=np.int32)
self._test_dynshared_slice(slice_nonunit_reverse_stride, arr, expected)
def test_issue_5073(self):
# An example with which Bug #5073 (slices of dynamic shared memory all
# alias) was discovered. The kernel uses all threads in the block to
# load values into slices of dynamic shared memory. One thread per
# block then writes the loaded values back to a global array after
# syncthreads().
arr = np.arange(1024)
nelem = len(arr)
nthreads = 16
nblocks = int(nelem / nthreads)
dt = nps.from_dtype(arr.dtype)
nshared = nthreads * arr.dtype.itemsize
chunksize = int(nthreads / 2)
@cuda.jit
def sm_slice_copy(x, y, chunksize):
dynsmem = cuda.shared.array(0, dtype=dt)
sm1 = dynsmem[0:chunksize]
sm2 = dynsmem[chunksize:chunksize * 2]
tx = cuda.threadIdx.x
bx = cuda.blockIdx.x
bd = cuda.blockDim.x
# load this block's chunk into shared
i = bx * bd + tx
if i < len(x):
if tx < chunksize:
sm1[tx] = x[i]
else:
sm2[tx - chunksize] = x[i]
cuda.syncthreads()
# one thread per block writes this block's chunk
if tx == 0:
for j in range(chunksize):
y[bd * bx + j] = sm1[j]
y[bd * bx + j + chunksize] = sm2[j]
d_result = cuda.device_array_like(arr)
sm_slice_copy[nblocks, nthreads, 0, nshared](arr, d_result, chunksize)
host_result = d_result.copy_to_host()
np.testing.assert_array_equal(arr, host_result)
@skip_on_cudasim("Can't check typing in simulator")
def test_invalid_array_type(self):
rgx = ".*Cannot infer the type of variable 'arr'.*"
def unsupported_type():
arr = cuda.shared.array(10, dtype=np.dtype('O')) # noqa: F841
with self.assertRaisesRegex(TypingError, rgx):
cuda.jit(void())(unsupported_type)
rgx = ".*Invalid NumPy dtype specified: 'int33'.*"
def invalid_string_type():
arr = cuda.shared.array(10, dtype='int33') # noqa: F841
with self.assertRaisesRegex(TypingError, rgx):
cuda.jit(void())(invalid_string_type)
@skip_on_cudasim("Struct model array unsupported in simulator")
def test_struct_model_type_static(self):
nthreads = 64
@cuda.jit(void(int32[::1], int32[::1]))
def write_then_reverse_read_static(outx, outy):
# Test creation
arr = cuda.shared.array(nthreads, dtype=test_struct_model_type)
i = cuda.grid(1)
ri = nthreads - i - 1
if i < len(outx) and i < len(outy):
# Test set to arr
obj = TestStruct(int32(i), int32(i * 2))
arr[i] = obj
cuda.syncthreads()
# Test get from arr
outx[i] = arr[ri].x
outy[i] = arr[ri].y
arrx = np.zeros((nthreads,), dtype="int32")
arry = np.zeros((nthreads,), dtype="int32")
write_then_reverse_read_static[1, nthreads](arrx, arry)
for i, x in enumerate(arrx):
self.assertEqual(x, nthreads - i - 1)
for i, y in enumerate(arry):
self.assertEqual(y, (nthreads - i - 1) * 2)
if __name__ == '__main__':
unittest.main()