ai-content-maker/.venv/Lib/site-packages/numba/cuda/tests/cudapy/test_transpose.py

81 lines
3.1 KiB
Python

import numpy as np
from numba import cuda
from numba.cuda.kernels.transpose import transpose
from numba.cuda.testing import unittest
from numba.cuda.testing import skip_on_cudasim, CUDATestCase
recordwith2darray = np.dtype([('i', np.int32),
('j', np.float32, (3, 2))])
@skip_on_cudasim('Device Array API unsupported in the simulator')
class TestTranspose(CUDATestCase):
def test_transpose(self):
variants = ((5, 6, np.float64),
(128, 128, np.complex128),
(1025, 512, np.float64))
for rows, cols, dtype in variants:
with self.subTest(rows=rows, cols=cols, dtype=dtype):
x = np.arange(rows * cols, dtype=dtype).reshape(cols, rows)
y = np.zeros(rows * cols, dtype=dtype).reshape(rows, cols)
dx = cuda.to_device(x)
dy = cuda.cudadrv.devicearray.from_array_like(y)
transpose(dx, dy)
dy.copy_to_host(y)
np.testing.assert_array_equal(x.transpose(), y)
small_variants = ((2, 3), (16, 16), (16, 17), (17, 16), (14, 15), (15, 14),
(14, 14))
def test_transpose_record(self):
for rows, cols in self.small_variants:
with self.subTest(rows=rows, cols=cols):
arr = np.recarray((rows, cols), dtype=recordwith2darray)
for x in range(rows):
for y in range(cols):
arr[x, y].i = x ** 2 + y
j = np.arange(3 * 2, dtype=np.float32)
arr[x, y].j = j.reshape(3, 2) * x + y
transposed = arr.T
d_arr = cuda.to_device(arr)
d_transposed = cuda.device_array_like(transposed)
transpose(d_arr, d_transposed)
host_transposed = d_transposed.copy_to_host()
np.testing.assert_array_equal(transposed, host_transposed)
def test_transpose_bool(self):
for rows, cols in self.small_variants:
with self.subTest(rows=rows, cols=cols):
arr = np.random.randint(2, size=(rows, cols), dtype=np.bool_)
transposed = arr.T
d_arr = cuda.to_device(arr)
d_transposed = cuda.device_array_like(transposed)
transpose(d_arr, d_transposed)
host_transposed = d_transposed.copy_to_host()
np.testing.assert_array_equal(transposed, host_transposed)
def test_transpose_view(self):
# Because the strides of transposes of views differ to those in NumPy
# (see issue #4974), we test the shape and strides of a transpose.
a = np.arange(120, dtype=np.int64).reshape((10, 12))
a_view_t = a[::2, ::2].T
d_a = cuda.to_device(a)
d_a_view_t = d_a[::2, ::2].T
self.assertEqual(d_a_view_t.shape, (6, 5))
self.assertEqual(d_a_view_t.strides, (40, 8))
h_a_view_t = d_a_view_t.copy_to_host()
np.testing.assert_array_equal(a_view_t, h_a_view_t)
if __name__ == '__main__':
unittest.main()