908 lines
30 KiB
Python
908 lines
30 KiB
Python
"""
|
|
Implements custom ufunc dispatch mechanism for non-CPU devices.
|
|
"""
|
|
|
|
from abc import ABCMeta, abstractmethod
|
|
from collections import OrderedDict
|
|
import operator
|
|
import warnings
|
|
from functools import reduce
|
|
|
|
import numpy as np
|
|
|
|
from numba.np.ufunc.ufuncbuilder import _BaseUFuncBuilder, parse_identity
|
|
from numba.core import types, sigutils
|
|
from numba.core.typing import signature
|
|
from numba.np.ufunc.sigparse import parse_signature
|
|
|
|
|
|
def _broadcast_axis(a, b):
|
|
"""
|
|
Raises
|
|
------
|
|
ValueError if broadcast fails
|
|
"""
|
|
if a == b:
|
|
return a
|
|
elif a == 1:
|
|
return b
|
|
elif b == 1:
|
|
return a
|
|
else:
|
|
raise ValueError("failed to broadcast {0} and {1}".format(a, b))
|
|
|
|
|
|
def _pairwise_broadcast(shape1, shape2):
|
|
"""
|
|
Raises
|
|
------
|
|
ValueError if broadcast fails
|
|
"""
|
|
shape1, shape2 = map(tuple, [shape1, shape2])
|
|
|
|
while len(shape1) < len(shape2):
|
|
shape1 = (1,) + shape1
|
|
|
|
while len(shape1) > len(shape2):
|
|
shape2 = (1,) + shape2
|
|
|
|
return tuple(_broadcast_axis(a, b) for a, b in zip(shape1, shape2))
|
|
|
|
|
|
def _multi_broadcast(*shapelist):
|
|
"""
|
|
Raises
|
|
------
|
|
ValueError if broadcast fails
|
|
"""
|
|
assert shapelist
|
|
|
|
result = shapelist[0]
|
|
others = shapelist[1:]
|
|
try:
|
|
for i, each in enumerate(others, start=1):
|
|
result = _pairwise_broadcast(result, each)
|
|
except ValueError:
|
|
raise ValueError("failed to broadcast argument #{0}".format(i))
|
|
else:
|
|
return result
|
|
|
|
|
|
class UFuncMechanism(object):
|
|
"""
|
|
Prepare ufunc arguments for vectorize.
|
|
"""
|
|
DEFAULT_STREAM = None
|
|
SUPPORT_DEVICE_SLICING = False
|
|
|
|
def __init__(self, typemap, args):
|
|
"""Never used directly by user. Invoke by UFuncMechanism.call().
|
|
"""
|
|
self.typemap = typemap
|
|
self.args = args
|
|
nargs = len(self.args)
|
|
self.argtypes = [None] * nargs
|
|
self.scalarpos = []
|
|
self.signature = None
|
|
self.arrays = [None] * nargs
|
|
|
|
def _fill_arrays(self):
|
|
"""
|
|
Get all arguments in array form
|
|
"""
|
|
for i, arg in enumerate(self.args):
|
|
if self.is_device_array(arg):
|
|
self.arrays[i] = self.as_device_array(arg)
|
|
elif isinstance(arg, (int, float, complex, np.number)):
|
|
# Is scalar
|
|
self.scalarpos.append(i)
|
|
else:
|
|
self.arrays[i] = np.asarray(arg)
|
|
|
|
def _fill_argtypes(self):
|
|
"""
|
|
Get dtypes
|
|
"""
|
|
for i, ary in enumerate(self.arrays):
|
|
if ary is not None:
|
|
dtype = getattr(ary, 'dtype')
|
|
if dtype is None:
|
|
dtype = np.asarray(ary).dtype
|
|
self.argtypes[i] = dtype
|
|
|
|
def _resolve_signature(self):
|
|
"""Resolve signature.
|
|
May have ambiguous case.
|
|
"""
|
|
matches = []
|
|
# Resolve scalar args exact match first
|
|
if self.scalarpos:
|
|
# Try resolve scalar arguments
|
|
for formaltys in self.typemap:
|
|
match_map = []
|
|
for i, (formal, actual) in enumerate(zip(formaltys,
|
|
self.argtypes)):
|
|
if actual is None:
|
|
actual = np.asarray(self.args[i]).dtype
|
|
|
|
match_map.append(actual == formal)
|
|
|
|
if all(match_map):
|
|
matches.append(formaltys)
|
|
|
|
# No matching with exact match; try coercing the scalar arguments
|
|
if not matches:
|
|
matches = []
|
|
for formaltys in self.typemap:
|
|
all_matches = all(actual is None or formal == actual
|
|
for formal, actual in
|
|
zip(formaltys, self.argtypes))
|
|
if all_matches:
|
|
matches.append(formaltys)
|
|
|
|
if not matches:
|
|
raise TypeError("No matching version. GPU ufunc requires array "
|
|
"arguments to have the exact types. This behaves "
|
|
"like regular ufunc with casting='no'.")
|
|
|
|
if len(matches) > 1:
|
|
raise TypeError("Failed to resolve ufunc due to ambiguous "
|
|
"signature. Too many untyped scalars. "
|
|
"Use numpy dtype object to type tag.")
|
|
|
|
# Try scalar arguments
|
|
self.argtypes = matches[0]
|
|
|
|
def _get_actual_args(self):
|
|
"""Return the actual arguments
|
|
Casts scalar arguments to np.array.
|
|
"""
|
|
for i in self.scalarpos:
|
|
self.arrays[i] = np.array([self.args[i]], dtype=self.argtypes[i])
|
|
|
|
return self.arrays
|
|
|
|
def _broadcast(self, arys):
|
|
"""Perform numpy ufunc broadcasting
|
|
"""
|
|
shapelist = [a.shape for a in arys]
|
|
shape = _multi_broadcast(*shapelist)
|
|
|
|
for i, ary in enumerate(arys):
|
|
if ary.shape == shape:
|
|
pass
|
|
|
|
else:
|
|
if self.is_device_array(ary):
|
|
arys[i] = self.broadcast_device(ary, shape)
|
|
|
|
else:
|
|
ax_differs = [ax for ax in range(len(shape))
|
|
if ax >= ary.ndim
|
|
or ary.shape[ax] != shape[ax]]
|
|
|
|
missingdim = len(shape) - len(ary.shape)
|
|
strides = [0] * missingdim + list(ary.strides)
|
|
|
|
for ax in ax_differs:
|
|
strides[ax] = 0
|
|
|
|
strided = np.lib.stride_tricks.as_strided(ary,
|
|
shape=shape,
|
|
strides=strides)
|
|
|
|
arys[i] = self.force_array_layout(strided)
|
|
|
|
return arys
|
|
|
|
def get_arguments(self):
|
|
"""Prepare and return the arguments for the ufunc.
|
|
Does not call to_device().
|
|
"""
|
|
self._fill_arrays()
|
|
self._fill_argtypes()
|
|
self._resolve_signature()
|
|
arys = self._get_actual_args()
|
|
return self._broadcast(arys)
|
|
|
|
def get_function(self):
|
|
"""Returns (result_dtype, function)
|
|
"""
|
|
return self.typemap[self.argtypes]
|
|
|
|
def is_device_array(self, obj):
|
|
"""Is the `obj` a device array?
|
|
Override in subclass
|
|
"""
|
|
return False
|
|
|
|
def as_device_array(self, obj):
|
|
"""Convert the `obj` to a device array
|
|
Override in subclass
|
|
|
|
Default implementation is an identity function
|
|
"""
|
|
return obj
|
|
|
|
def broadcast_device(self, ary, shape):
|
|
"""Handles ondevice broadcasting
|
|
|
|
Override in subclass to add support.
|
|
"""
|
|
raise NotImplementedError("broadcasting on device is not supported")
|
|
|
|
def force_array_layout(self, ary):
|
|
"""Ensures array layout met device requirement.
|
|
|
|
Override in sublcass
|
|
"""
|
|
return ary
|
|
|
|
@classmethod
|
|
def call(cls, typemap, args, kws):
|
|
"""Perform the entire ufunc call mechanism.
|
|
"""
|
|
# Handle keywords
|
|
stream = kws.pop('stream', cls.DEFAULT_STREAM)
|
|
out = kws.pop('out', None)
|
|
|
|
if kws:
|
|
warnings.warn("unrecognized keywords: %s" % ', '.join(kws))
|
|
|
|
# Begin call resolution
|
|
cr = cls(typemap, args)
|
|
args = cr.get_arguments()
|
|
resty, func = cr.get_function()
|
|
|
|
outshape = args[0].shape
|
|
|
|
# Adjust output value
|
|
if out is not None and cr.is_device_array(out):
|
|
out = cr.as_device_array(out)
|
|
|
|
def attempt_ravel(a):
|
|
if cr.SUPPORT_DEVICE_SLICING:
|
|
raise NotImplementedError
|
|
|
|
try:
|
|
# Call the `.ravel()` method
|
|
return a.ravel()
|
|
except NotImplementedError:
|
|
# If it is not a device array
|
|
if not cr.is_device_array(a):
|
|
raise
|
|
# For device array, retry ravel on the host by first
|
|
# copying it back.
|
|
else:
|
|
hostary = cr.to_host(a, stream).ravel()
|
|
return cr.to_device(hostary, stream)
|
|
|
|
if args[0].ndim > 1:
|
|
args = [attempt_ravel(a) for a in args]
|
|
|
|
# Prepare argument on the device
|
|
devarys = []
|
|
any_device = False
|
|
for a in args:
|
|
if cr.is_device_array(a):
|
|
devarys.append(a)
|
|
any_device = True
|
|
else:
|
|
dev_a = cr.to_device(a, stream=stream)
|
|
devarys.append(dev_a)
|
|
|
|
# Launch
|
|
shape = args[0].shape
|
|
if out is None:
|
|
# No output is provided
|
|
devout = cr.allocate_device_array(shape, resty, stream=stream)
|
|
|
|
devarys.extend([devout])
|
|
cr.launch(func, shape[0], stream, devarys)
|
|
|
|
if any_device:
|
|
# If any of the arguments are on device,
|
|
# Keep output on the device
|
|
return devout.reshape(outshape)
|
|
else:
|
|
# Otherwise, transfer output back to host
|
|
return devout.copy_to_host().reshape(outshape)
|
|
|
|
elif cr.is_device_array(out):
|
|
# If output is provided and it is a device array,
|
|
# Return device array
|
|
if out.ndim > 1:
|
|
out = attempt_ravel(out)
|
|
devout = out
|
|
devarys.extend([devout])
|
|
cr.launch(func, shape[0], stream, devarys)
|
|
return devout.reshape(outshape)
|
|
|
|
else:
|
|
# If output is provided and it is a host array,
|
|
# Return host array
|
|
assert out.shape == shape
|
|
assert out.dtype == resty
|
|
devout = cr.allocate_device_array(shape, resty, stream=stream)
|
|
devarys.extend([devout])
|
|
cr.launch(func, shape[0], stream, devarys)
|
|
return devout.copy_to_host(out, stream=stream).reshape(outshape)
|
|
|
|
def to_device(self, hostary, stream):
|
|
"""Implement to device transfer
|
|
Override in subclass
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def to_host(self, devary, stream):
|
|
"""Implement to host transfer
|
|
Override in subclass
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def allocate_device_array(self, shape, dtype, stream):
|
|
"""Implements device allocation
|
|
Override in subclass
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def launch(self, func, count, stream, args):
|
|
"""Implements device function invocation
|
|
Override in subclass
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
def to_dtype(ty):
|
|
if isinstance(ty, types.EnumMember):
|
|
ty = ty.dtype
|
|
return np.dtype(str(ty))
|
|
|
|
|
|
class DeviceVectorize(_BaseUFuncBuilder):
|
|
def __init__(self, func, identity=None, cache=False, targetoptions={}):
|
|
if cache:
|
|
raise TypeError("caching is not supported")
|
|
for opt in targetoptions:
|
|
if opt == 'nopython':
|
|
warnings.warn("nopython kwarg for cuda target is redundant",
|
|
RuntimeWarning)
|
|
else:
|
|
fmt = "Unrecognized options. "
|
|
fmt += "cuda vectorize target does not support option: '%s'"
|
|
raise KeyError(fmt % opt)
|
|
self.py_func = func
|
|
self.identity = parse_identity(identity)
|
|
# { arg_dtype: (return_dtype), cudakernel }
|
|
self.kernelmap = OrderedDict()
|
|
|
|
@property
|
|
def pyfunc(self):
|
|
return self.py_func
|
|
|
|
def add(self, sig=None):
|
|
# compile core as device function
|
|
args, return_type = sigutils.normalize_signature(sig)
|
|
devfnsig = signature(return_type, *args)
|
|
|
|
funcname = self.pyfunc.__name__
|
|
kernelsource = self._get_kernel_source(self._kernel_template,
|
|
devfnsig, funcname)
|
|
corefn, return_type = self._compile_core(devfnsig)
|
|
glbl = self._get_globals(corefn)
|
|
sig = signature(types.void, *([a[:] for a in args] + [return_type[:]]))
|
|
exec(kernelsource, glbl)
|
|
|
|
stager = glbl['__vectorized_%s' % funcname]
|
|
kernel = self._compile_kernel(stager, sig)
|
|
|
|
argdtypes = tuple(to_dtype(t) for t in devfnsig.args)
|
|
resdtype = to_dtype(return_type)
|
|
self.kernelmap[tuple(argdtypes)] = resdtype, kernel
|
|
|
|
def build_ufunc(self):
|
|
raise NotImplementedError
|
|
|
|
def _get_kernel_source(self, template, sig, funcname):
|
|
args = ['a%d' % i for i in range(len(sig.args))]
|
|
fmts = dict(name=funcname,
|
|
args=', '.join(args),
|
|
argitems=', '.join('%s[__tid__]' % i for i in args))
|
|
return template.format(**fmts)
|
|
|
|
def _compile_core(self, sig):
|
|
raise NotImplementedError
|
|
|
|
def _get_globals(self, corefn):
|
|
raise NotImplementedError
|
|
|
|
def _compile_kernel(self, fnobj, sig):
|
|
raise NotImplementedError
|
|
|
|
|
|
class DeviceGUFuncVectorize(_BaseUFuncBuilder):
|
|
def __init__(self, func, sig, identity=None, cache=False, targetoptions={},
|
|
writable_args=()):
|
|
if cache:
|
|
raise TypeError("caching is not supported")
|
|
if writable_args:
|
|
raise TypeError("writable_args are not supported")
|
|
|
|
# Allow nopython flag to be set.
|
|
if not targetoptions.pop('nopython', True):
|
|
raise TypeError("nopython flag must be True")
|
|
# Are there any more target options?
|
|
if targetoptions:
|
|
opts = ', '.join([repr(k) for k in targetoptions.keys()])
|
|
fmt = "The following target options are not supported: {0}"
|
|
raise TypeError(fmt.format(opts))
|
|
|
|
self.py_func = func
|
|
self.identity = parse_identity(identity)
|
|
self.signature = sig
|
|
self.inputsig, self.outputsig = parse_signature(self.signature)
|
|
|
|
# Maps from a tuple of input_dtypes to (output_dtypes, kernel)
|
|
self.kernelmap = OrderedDict()
|
|
|
|
@property
|
|
def pyfunc(self):
|
|
return self.py_func
|
|
|
|
def add(self, sig=None):
|
|
indims = [len(x) for x in self.inputsig]
|
|
outdims = [len(x) for x in self.outputsig]
|
|
args, return_type = sigutils.normalize_signature(sig)
|
|
|
|
# It is only valid to specify types.none as a return type, or to not
|
|
# specify the return type (where the "Python None" is the return type)
|
|
valid_return_type = return_type in (types.none, None)
|
|
if not valid_return_type:
|
|
raise TypeError('guvectorized functions cannot return values: '
|
|
f'signature {sig} specifies {return_type} return '
|
|
'type')
|
|
|
|
funcname = self.py_func.__name__
|
|
src = expand_gufunc_template(self._kernel_template, indims,
|
|
outdims, funcname, args)
|
|
|
|
glbls = self._get_globals(sig)
|
|
|
|
exec(src, glbls)
|
|
fnobj = glbls['__gufunc_{name}'.format(name=funcname)]
|
|
|
|
outertys = list(_determine_gufunc_outer_types(args, indims + outdims))
|
|
kernel = self._compile_kernel(fnobj, sig=tuple(outertys))
|
|
|
|
nout = len(outdims)
|
|
dtypes = [np.dtype(str(t.dtype)) for t in outertys]
|
|
indtypes = tuple(dtypes[:-nout])
|
|
outdtypes = tuple(dtypes[-nout:])
|
|
|
|
self.kernelmap[indtypes] = outdtypes, kernel
|
|
|
|
def _compile_kernel(self, fnobj, sig):
|
|
raise NotImplementedError
|
|
|
|
def _get_globals(self, sig):
|
|
raise NotImplementedError
|
|
|
|
|
|
def _determine_gufunc_outer_types(argtys, dims):
|
|
for at, nd in zip(argtys, dims):
|
|
if isinstance(at, types.Array):
|
|
yield at.copy(ndim=nd + 1)
|
|
else:
|
|
if nd > 0:
|
|
raise ValueError("gufunc signature mismatch: ndim>0 for scalar")
|
|
yield types.Array(dtype=at, ndim=1, layout='A')
|
|
|
|
|
|
def expand_gufunc_template(template, indims, outdims, funcname, argtypes):
|
|
"""Expand gufunc source template
|
|
"""
|
|
argdims = indims + outdims
|
|
argnames = ["arg{0}".format(i) for i in range(len(argdims))]
|
|
checkedarg = "min({0})".format(', '.join(["{0}.shape[0]".format(a)
|
|
for a in argnames]))
|
|
inputs = [_gen_src_for_indexing(aref, adims, atype)
|
|
for aref, adims, atype in zip(argnames, indims, argtypes)]
|
|
outputs = [_gen_src_for_indexing(aref, adims, atype)
|
|
for aref, adims, atype in zip(argnames[len(indims):], outdims,
|
|
argtypes[len(indims):])]
|
|
argitems = inputs + outputs
|
|
src = template.format(name=funcname, args=', '.join(argnames),
|
|
checkedarg=checkedarg,
|
|
argitems=', '.join(argitems))
|
|
return src
|
|
|
|
|
|
def _gen_src_for_indexing(aref, adims, atype):
|
|
return "{aref}[{sliced}]".format(aref=aref,
|
|
sliced=_gen_src_index(adims, atype))
|
|
|
|
|
|
def _gen_src_index(adims, atype):
|
|
if adims > 0:
|
|
return ','.join(['__tid__'] + [':'] * adims)
|
|
elif isinstance(atype, types.Array) and atype.ndim - 1 == adims:
|
|
# Special case for 0-nd in shape-signature but
|
|
# 1d array in type signature.
|
|
# Slice it so that the result has the same dimension.
|
|
return '__tid__:(__tid__ + 1)'
|
|
else:
|
|
return '__tid__'
|
|
|
|
|
|
class GUFuncEngine(object):
|
|
'''Determine how to broadcast and execute a gufunc
|
|
base on input shape and signature
|
|
'''
|
|
|
|
@classmethod
|
|
def from_signature(cls, signature):
|
|
return cls(*parse_signature(signature))
|
|
|
|
def __init__(self, inputsig, outputsig):
|
|
# signatures
|
|
self.sin = inputsig
|
|
self.sout = outputsig
|
|
# argument count
|
|
self.nin = len(self.sin)
|
|
self.nout = len(self.sout)
|
|
|
|
def schedule(self, ishapes):
|
|
if len(ishapes) != self.nin:
|
|
raise TypeError('invalid number of input argument')
|
|
|
|
# associate symbol values for input signature
|
|
symbolmap = {}
|
|
outer_shapes = []
|
|
inner_shapes = []
|
|
|
|
for argn, (shape, symbols) in enumerate(zip(ishapes, self.sin)):
|
|
argn += 1 # start from 1 for human
|
|
inner_ndim = len(symbols)
|
|
if len(shape) < inner_ndim:
|
|
fmt = "arg #%d: insufficient inner dimension"
|
|
raise ValueError(fmt % (argn,))
|
|
if inner_ndim:
|
|
inner_shape = shape[-inner_ndim:]
|
|
outer_shape = shape[:-inner_ndim]
|
|
else:
|
|
inner_shape = ()
|
|
outer_shape = shape
|
|
|
|
for axis, (dim, sym) in enumerate(zip(inner_shape, symbols)):
|
|
axis += len(outer_shape)
|
|
if sym in symbolmap:
|
|
if symbolmap[sym] != dim:
|
|
fmt = "arg #%d: shape[%d] mismatch argument"
|
|
raise ValueError(fmt % (argn, axis))
|
|
symbolmap[sym] = dim
|
|
|
|
outer_shapes.append(outer_shape)
|
|
inner_shapes.append(inner_shape)
|
|
|
|
# solve output shape
|
|
oshapes = []
|
|
for outsig in self.sout:
|
|
oshape = []
|
|
for sym in outsig:
|
|
oshape.append(symbolmap[sym])
|
|
oshapes.append(tuple(oshape))
|
|
|
|
# find the biggest outershape as looping dimension
|
|
sizes = [reduce(operator.mul, s, 1) for s in outer_shapes]
|
|
largest_i = np.argmax(sizes)
|
|
loopdims = outer_shapes[largest_i]
|
|
|
|
pinned = [False] * self.nin # same argument for each iteration
|
|
for i, d in enumerate(outer_shapes):
|
|
if d != loopdims:
|
|
if d == (1,) or d == ():
|
|
pinned[i] = True
|
|
else:
|
|
fmt = "arg #%d: outer dimension mismatch"
|
|
raise ValueError(fmt % (i + 1,))
|
|
|
|
return GUFuncSchedule(self, inner_shapes, oshapes, loopdims, pinned)
|
|
|
|
|
|
class GUFuncSchedule(object):
|
|
def __init__(self, parent, ishapes, oshapes, loopdims, pinned):
|
|
self.parent = parent
|
|
# core shapes
|
|
self.ishapes = ishapes
|
|
self.oshapes = oshapes
|
|
# looping dimension
|
|
self.loopdims = loopdims
|
|
self.loopn = reduce(operator.mul, loopdims, 1)
|
|
# flags
|
|
self.pinned = pinned
|
|
|
|
self.output_shapes = [loopdims + s for s in oshapes]
|
|
|
|
def __str__(self):
|
|
import pprint
|
|
|
|
attrs = 'ishapes', 'oshapes', 'loopdims', 'loopn', 'pinned'
|
|
values = [(k, getattr(self, k)) for k in attrs]
|
|
return pprint.pformat(dict(values))
|
|
|
|
|
|
class GeneralizedUFunc(object):
|
|
def __init__(self, kernelmap, engine):
|
|
self.kernelmap = kernelmap
|
|
self.engine = engine
|
|
self.max_blocksize = 2 ** 30
|
|
|
|
def __call__(self, *args, **kws):
|
|
callsteps = self._call_steps(self.engine.nin, self.engine.nout,
|
|
args, kws)
|
|
indtypes, schedule, outdtypes, kernel = self._schedule(
|
|
callsteps.inputs, callsteps.outputs)
|
|
callsteps.adjust_input_types(indtypes)
|
|
|
|
outputs = callsteps.prepare_outputs(schedule, outdtypes)
|
|
inputs = callsteps.prepare_inputs()
|
|
parameters = self._broadcast(schedule, inputs, outputs)
|
|
|
|
callsteps.launch_kernel(kernel, schedule.loopn, parameters)
|
|
|
|
return callsteps.post_process_outputs(outputs)
|
|
|
|
def _schedule(self, inputs, outs):
|
|
input_shapes = [a.shape for a in inputs]
|
|
schedule = self.engine.schedule(input_shapes)
|
|
|
|
# find kernel
|
|
indtypes = tuple(i.dtype for i in inputs)
|
|
try:
|
|
outdtypes, kernel = self.kernelmap[indtypes]
|
|
except KeyError:
|
|
# No exact match, then use the first compatible.
|
|
# This does not match the numpy dispatching exactly.
|
|
# Later, we may just jit a new version for the missing signature.
|
|
indtypes = self._search_matching_signature(indtypes)
|
|
# Select kernel
|
|
outdtypes, kernel = self.kernelmap[indtypes]
|
|
|
|
# check output
|
|
for sched_shape, out in zip(schedule.output_shapes, outs):
|
|
if out is not None and sched_shape != out.shape:
|
|
raise ValueError('output shape mismatch')
|
|
|
|
return indtypes, schedule, outdtypes, kernel
|
|
|
|
def _search_matching_signature(self, idtypes):
|
|
"""
|
|
Given the input types in `idtypes`, return a compatible sequence of
|
|
types that is defined in `kernelmap`.
|
|
|
|
Note: Ordering is guaranteed by `kernelmap` being a OrderedDict
|
|
"""
|
|
for sig in self.kernelmap.keys():
|
|
if all(np.can_cast(actual, desired)
|
|
for actual, desired in zip(sig, idtypes)):
|
|
return sig
|
|
else:
|
|
raise TypeError("no matching signature")
|
|
|
|
def _broadcast(self, schedule, params, retvals):
|
|
assert schedule.loopn > 0, "zero looping dimension"
|
|
|
|
odim = 1 if not schedule.loopdims else schedule.loopn
|
|
newparams = []
|
|
for p, cs in zip(params, schedule.ishapes):
|
|
if not cs and p.size == 1:
|
|
# Broadcast scalar input
|
|
devary = self._broadcast_scalar_input(p, odim)
|
|
newparams.append(devary)
|
|
else:
|
|
# Broadcast vector input
|
|
newparams.append(self._broadcast_array(p, odim, cs))
|
|
|
|
newretvals = []
|
|
for retval, oshape in zip(retvals, schedule.oshapes):
|
|
newretvals.append(retval.reshape(odim, *oshape))
|
|
return tuple(newparams) + tuple(newretvals)
|
|
|
|
def _broadcast_array(self, ary, newdim, innerdim):
|
|
newshape = (newdim,) + innerdim
|
|
# No change in shape
|
|
if ary.shape == newshape:
|
|
return ary
|
|
|
|
# Creating new dimension
|
|
elif len(ary.shape) < len(newshape):
|
|
assert newshape[-len(ary.shape):] == ary.shape, \
|
|
"cannot add dim and reshape at the same time"
|
|
return self._broadcast_add_axis(ary, newshape)
|
|
|
|
# Collapsing dimension
|
|
else:
|
|
return ary.reshape(*newshape)
|
|
|
|
def _broadcast_add_axis(self, ary, newshape):
|
|
raise NotImplementedError("cannot add new axis")
|
|
|
|
def _broadcast_scalar_input(self, ary, shape):
|
|
raise NotImplementedError
|
|
|
|
|
|
class GUFuncCallSteps(metaclass=ABCMeta):
|
|
"""
|
|
Implements memory management and kernel launch operations for GUFunc calls.
|
|
|
|
One instance of this class is instantiated for each call, and the instance
|
|
is specific to the arguments given to the GUFunc call.
|
|
|
|
The base class implements the overall logic; subclasses provide
|
|
target-specific implementations of individual functions.
|
|
"""
|
|
|
|
# The base class uses these slots; subclasses may provide additional slots.
|
|
__slots__ = [
|
|
'outputs',
|
|
'inputs',
|
|
'_copy_result_to_host',
|
|
]
|
|
|
|
@abstractmethod
|
|
def launch_kernel(self, kernel, nelem, args):
|
|
"""Implement the kernel launch"""
|
|
|
|
@abstractmethod
|
|
def is_device_array(self, obj):
|
|
"""
|
|
Return True if `obj` is a device array for this target, False
|
|
otherwise.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def as_device_array(self, obj):
|
|
"""
|
|
Return `obj` as a device array on this target.
|
|
|
|
May return `obj` directly if it is already on the target.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def to_device(self, hostary):
|
|
"""
|
|
Copy `hostary` to the device and return the device array.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def allocate_device_array(self, shape, dtype):
|
|
"""
|
|
Allocate a new uninitialized device array with the given shape and
|
|
dtype.
|
|
"""
|
|
|
|
def __init__(self, nin, nout, args, kwargs):
|
|
outputs = kwargs.get('out')
|
|
|
|
# Ensure the user has passed a correct number of arguments
|
|
if outputs is None and len(args) not in (nin, (nin + nout)):
|
|
def pos_argn(n):
|
|
return f'{n} positional argument{"s" * (n != 1)}'
|
|
|
|
msg = (f'This gufunc accepts {pos_argn(nin)} (when providing '
|
|
f'input only) or {pos_argn(nin + nout)} (when providing '
|
|
f'input and output). Got {pos_argn(len(args))}.')
|
|
raise TypeError(msg)
|
|
|
|
if outputs is not None and len(args) > nin:
|
|
raise ValueError("cannot specify argument 'out' as both positional "
|
|
"and keyword")
|
|
else:
|
|
# If the user did not pass outputs either in the out kwarg or as
|
|
# positional arguments, then we need to generate an initial list of
|
|
# "placeholder" outputs using None as a sentry value
|
|
outputs = [outputs] * nout
|
|
|
|
# Ensure all output device arrays are Numba device arrays - for
|
|
# example, any output passed in that supports the CUDA Array Interface
|
|
# is converted to a Numba CUDA device array; others are left untouched.
|
|
all_user_outputs_are_host = True
|
|
self.outputs = []
|
|
for output in outputs:
|
|
if self.is_device_array(output):
|
|
self.outputs.append(self.as_device_array(output))
|
|
all_user_outputs_are_host = False
|
|
else:
|
|
self.outputs.append(output)
|
|
|
|
all_host_arrays = not any([self.is_device_array(a) for a in args])
|
|
|
|
# - If any of the arguments are device arrays, we leave the output on
|
|
# the device.
|
|
self._copy_result_to_host = (all_host_arrays and
|
|
all_user_outputs_are_host)
|
|
|
|
# Normalize arguments - ensure they are either device- or host-side
|
|
# arrays (as opposed to lists, tuples, etc).
|
|
def normalize_arg(a):
|
|
if self.is_device_array(a):
|
|
convert = self.as_device_array
|
|
else:
|
|
convert = np.asarray
|
|
|
|
return convert(a)
|
|
|
|
normalized_args = [normalize_arg(a) for a in args]
|
|
self.inputs = normalized_args[:nin]
|
|
|
|
# Check if there are extra arguments for outputs.
|
|
unused_inputs = normalized_args[nin:]
|
|
if unused_inputs:
|
|
self.outputs = unused_inputs
|
|
|
|
def adjust_input_types(self, indtypes):
|
|
"""
|
|
Attempt to cast the inputs to the required types if necessary
|
|
and if they are not device arrays.
|
|
|
|
Side effect: Only affects the elements of `inputs` that require
|
|
a type cast.
|
|
"""
|
|
for i, (ity, val) in enumerate(zip(indtypes, self.inputs)):
|
|
if ity != val.dtype:
|
|
if not hasattr(val, 'astype'):
|
|
msg = ("compatible signature is possible by casting but "
|
|
"{0} does not support .astype()").format(type(val))
|
|
raise TypeError(msg)
|
|
# Cast types
|
|
self.inputs[i] = val.astype(ity)
|
|
|
|
def prepare_outputs(self, schedule, outdtypes):
|
|
"""
|
|
Returns a list of output parameters that all reside on the target device.
|
|
|
|
Outputs that were passed-in to the GUFunc are used if they reside on the
|
|
device; other outputs are allocated as necessary.
|
|
"""
|
|
outputs = []
|
|
for shape, dtype, output in zip(schedule.output_shapes, outdtypes,
|
|
self.outputs):
|
|
if output is None or self._copy_result_to_host:
|
|
output = self.allocate_device_array(shape, dtype)
|
|
outputs.append(output)
|
|
|
|
return outputs
|
|
|
|
def prepare_inputs(self):
|
|
"""
|
|
Returns a list of input parameters that all reside on the target device.
|
|
"""
|
|
def ensure_device(parameter):
|
|
if self.is_device_array(parameter):
|
|
convert = self.as_device_array
|
|
else:
|
|
convert = self.to_device
|
|
|
|
return convert(parameter)
|
|
|
|
return [ensure_device(p) for p in self.inputs]
|
|
|
|
def post_process_outputs(self, outputs):
|
|
"""
|
|
Moves the given output(s) to the host if necessary.
|
|
|
|
Returns a single value (e.g. an array) if there was one output, or a
|
|
tuple of arrays if there were multiple. Although this feels a little
|
|
jarring, it is consistent with the behavior of GUFuncs in general.
|
|
"""
|
|
if self._copy_result_to_host:
|
|
outputs = [self.to_host(output, self_output)
|
|
for output, self_output in zip(outputs, self.outputs)]
|
|
elif self.outputs[0] is not None:
|
|
outputs = self.outputs
|
|
|
|
if len(outputs) == 1:
|
|
return outputs[0]
|
|
else:
|
|
return tuple(outputs)
|