ai-content-maker/.venv/Lib/site-packages/pandas/tests/extension/arrow/arrays.py

198 lines
5.6 KiB
Python

"""
Rudimentary Apache Arrow-backed ExtensionArray.
At the moment, just a boolean array / type is implemented.
Eventually, we'll want to parametrize the type and support
multiple dtypes. Not all methods are implemented yet, and the
current implementation is not efficient.
"""
from __future__ import annotations
import itertools
import operator
import numpy as np
import pyarrow as pa
from pandas._typing import type_t
import pandas as pd
from pandas.api.extensions import (
ExtensionDtype,
register_extension_dtype,
take,
)
from pandas.api.types import is_scalar
from pandas.core.arrays.arrow import ArrowExtensionArray as _ArrowExtensionArray
from pandas.core.construction import extract_array
@register_extension_dtype
class ArrowBoolDtype(ExtensionDtype):
type = np.bool_
kind = "b"
name = "arrow_bool"
na_value = pa.NULL
@classmethod
def construct_array_type(cls) -> type_t[ArrowBoolArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
return ArrowBoolArray
@property
def _is_boolean(self) -> bool:
return True
@register_extension_dtype
class ArrowStringDtype(ExtensionDtype):
type = str
kind = "U"
name = "arrow_string"
na_value = pa.NULL
@classmethod
def construct_array_type(cls) -> type_t[ArrowStringArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
return ArrowStringArray
class ArrowExtensionArray(_ArrowExtensionArray):
_data: pa.ChunkedArray
@classmethod
def _from_sequence(cls, values, dtype=None, copy=False):
# TODO: respect dtype, copy
if isinstance(values, cls):
# in particular for empty cases the pa.array(np.asarray(...))
# does not round-trip
return cls(values._data)
elif not len(values):
if isinstance(values, list):
dtype = bool if cls is ArrowBoolArray else str
values = np.array([], dtype=dtype)
arr = pa.chunked_array([pa.array(np.asarray(values))])
return cls(arr)
def __repr__(self):
return f"{type(self).__name__}({repr(self._data)})"
def __contains__(self, obj) -> bool:
if obj is None or obj is self.dtype.na_value:
# None -> EA.__contains__ only checks for self._dtype.na_value, not
# any compatible NA value.
# self.dtype.na_value -> <pa.NullScalar:None> isn't recognized by pd.isna
return bool(self.isna().any())
return bool(super().__contains__(obj))
def __getitem__(self, item):
if is_scalar(item):
return self._data.to_pandas()[item]
else:
vals = self._data.to_pandas()[item]
return type(self)._from_sequence(vals)
def astype(self, dtype, copy=True):
# needed to fix this astype for the Series constructor.
if isinstance(dtype, type(self.dtype)) and dtype == self.dtype:
if copy:
return self.copy()
return self
return super().astype(dtype, copy)
@property
def dtype(self):
return self._dtype
def _logical_method(self, other, op):
if not isinstance(other, type(self)):
raise NotImplementedError()
result = op(np.array(self._data), np.array(other._data))
return ArrowBoolArray(
pa.chunked_array([pa.array(result, mask=pd.isna(self._data.to_pandas()))])
)
def __eq__(self, other):
if not isinstance(other, type(self)):
# TODO: use some pyarrow function here?
return np.asarray(self).__eq__(other)
return self._logical_method(other, operator.eq)
def take(self, indices, allow_fill=False, fill_value=None):
data = self._data.to_pandas()
data = extract_array(data, extract_numpy=True)
if allow_fill and fill_value is None:
fill_value = self.dtype.na_value
result = take(data, indices, fill_value=fill_value, allow_fill=allow_fill)
return self._from_sequence(result, dtype=self.dtype)
@classmethod
def _concat_same_type(cls, to_concat):
chunks = list(itertools.chain.from_iterable(x._data.chunks for x in to_concat))
arr = pa.chunked_array(chunks)
return cls(arr)
def __invert__(self):
return type(self)._from_sequence(~self._data.to_pandas())
def _reduce(self, name: str, *, skipna: bool = True, **kwargs):
if skipna:
arr = self[~self.isna()]
else:
arr = self
try:
op = getattr(arr, name)
except AttributeError as err:
raise TypeError from err
return op(**kwargs)
def any(self, axis=0, out=None):
# Explicitly return a plain bool to reproduce GH-34660
return bool(self._data.to_pandas().any())
def all(self, axis=0, out=None):
# Explicitly return a plain bool to reproduce GH-34660
return bool(self._data.to_pandas().all())
class ArrowBoolArray(ArrowExtensionArray):
def __init__(self, values) -> None:
if not isinstance(values, pa.ChunkedArray):
raise ValueError
assert values.type == pa.bool_()
self._data = values
self._dtype = ArrowBoolDtype() # type: ignore[assignment]
class ArrowStringArray(ArrowExtensionArray):
def __init__(self, values) -> None:
if not isinstance(values, pa.ChunkedArray):
raise ValueError
assert values.type == pa.string()
self._data = values
self._dtype = ArrowStringDtype() # type: ignore[assignment]