ai-content-maker/.venv/Lib/site-packages/pandas/tests/frame/methods/test_diff.py

306 lines
9.7 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
class TestDataFrameDiff:
def test_diff_requires_integer(self):
df = DataFrame(np.random.randn(2, 2))
with pytest.raises(ValueError, match="periods must be an integer"):
df.diff(1.5)
# GH#44572 np.int64 is accepted
@pytest.mark.parametrize("num", [1, np.int64(1)])
def test_diff(self, datetime_frame, num):
df = datetime_frame
the_diff = df.diff(num)
expected = df["A"] - df["A"].shift(num)
tm.assert_series_equal(the_diff["A"], expected)
def test_diff_int_dtype(self):
# int dtype
a = 10_000_000_000_000_000
b = a + 1
ser = Series([a, b])
rs = DataFrame({"s": ser}).diff()
assert rs.s[1] == 1
def test_diff_mixed_numeric(self, datetime_frame):
# mixed numeric
tf = datetime_frame.astype("float32")
the_diff = tf.diff(1)
tm.assert_series_equal(the_diff["A"], tf["A"] - tf["A"].shift(1))
def test_diff_axis1_nonconsolidated(self):
# GH#10907
df = DataFrame({"y": Series([2]), "z": Series([3])})
df.insert(0, "x", 1)
result = df.diff(axis=1)
expected = DataFrame({"x": np.nan, "y": Series(1), "z": Series(1)})
tm.assert_frame_equal(result, expected)
def test_diff_timedelta64_with_nat(self):
# GH#32441
arr = np.arange(6).reshape(3, 2).astype("timedelta64[ns]")
arr[:, 0] = np.timedelta64("NaT", "ns")
df = DataFrame(arr)
result = df.diff(1, axis=0)
expected = DataFrame({0: df[0], 1: [pd.NaT, pd.Timedelta(2), pd.Timedelta(2)]})
tm.assert_equal(result, expected)
result = df.diff(0)
expected = df - df
assert expected[0].isna().all()
tm.assert_equal(result, expected)
result = df.diff(-1, axis=1)
expected = df * np.nan
tm.assert_equal(result, expected)
@pytest.mark.parametrize("tz", [None, "UTC"])
def test_diff_datetime_axis0_with_nat(self, tz):
# GH#32441
dti = pd.DatetimeIndex(["NaT", "2019-01-01", "2019-01-02"], tz=tz)
ser = Series(dti)
df = ser.to_frame()
result = df.diff()
ex_index = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta(days=1)])
expected = Series(ex_index).to_frame()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("tz", [pytest.param(None, marks=pytest.mark.xfail), "UTC"])
def test_diff_datetime_with_nat_zero_periods(self, tz):
# diff on NaT values should give NaT, not timedelta64(0)
dti = date_range("2016-01-01", periods=4, tz=tz)
ser = Series(dti)
df = ser.to_frame()
df[1] = ser.copy()
with tm.assert_produces_warning(None):
df.iloc[:, 0] = pd.NaT
expected = df - df
assert expected[0].isna().all()
result = df.diff(0, axis=0)
tm.assert_frame_equal(result, expected)
result = df.diff(0, axis=1)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("tz", [None, "UTC"])
def test_diff_datetime_axis0(self, tz):
# GH#18578
df = DataFrame(
{
0: date_range("2010", freq="D", periods=2, tz=tz),
1: date_range("2010", freq="D", periods=2, tz=tz),
}
)
result = df.diff(axis=0)
expected = DataFrame(
{
0: pd.TimedeltaIndex(["NaT", "1 days"]),
1: pd.TimedeltaIndex(["NaT", "1 days"]),
}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("tz", [None, "UTC"])
def test_diff_datetime_axis1(self, tz):
# GH#18578
df = DataFrame(
{
0: date_range("2010", freq="D", periods=2, tz=tz),
1: date_range("2010", freq="D", periods=2, tz=tz),
}
)
result = df.diff(axis=1)
expected = DataFrame(
{
0: pd.TimedeltaIndex(["NaT", "NaT"]),
1: pd.TimedeltaIndex(["0 days", "0 days"]),
}
)
tm.assert_frame_equal(result, expected)
def test_diff_timedelta(self):
# GH#4533
df = DataFrame(
{
"time": [Timestamp("20130101 9:01"), Timestamp("20130101 9:02")],
"value": [1.0, 2.0],
}
)
res = df.diff()
exp = DataFrame(
[[pd.NaT, np.nan], [pd.Timedelta("00:01:00"), 1]], columns=["time", "value"]
)
tm.assert_frame_equal(res, exp)
def test_diff_mixed_dtype(self):
df = DataFrame(np.random.randn(5, 3))
df["A"] = np.array([1, 2, 3, 4, 5], dtype=object)
result = df.diff()
assert result[0].dtype == np.float64
def test_diff_neg_n(self, datetime_frame):
rs = datetime_frame.diff(-1)
xp = datetime_frame - datetime_frame.shift(-1)
tm.assert_frame_equal(rs, xp)
def test_diff_float_n(self, datetime_frame):
rs = datetime_frame.diff(1.0)
xp = datetime_frame.diff(1)
tm.assert_frame_equal(rs, xp)
def test_diff_axis(self):
# GH#9727
df = DataFrame([[1.0, 2.0], [3.0, 4.0]])
tm.assert_frame_equal(
df.diff(axis=1), DataFrame([[np.nan, 1.0], [np.nan, 1.0]])
)
tm.assert_frame_equal(
df.diff(axis=0), DataFrame([[np.nan, np.nan], [2.0, 2.0]])
)
def test_diff_period(self):
# GH#32995 Don't pass an incorrect axis
pi = date_range("2016-01-01", periods=3).to_period("D")
df = DataFrame({"A": pi})
result = df.diff(1, axis=1)
expected = (df - pd.NaT).astype(object)
tm.assert_frame_equal(result, expected)
def test_diff_axis1_mixed_dtypes(self):
# GH#32995 operate column-wise when we have mixed dtypes and axis=1
df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
expected = DataFrame({"A": [np.nan, np.nan, np.nan], "B": df["B"] / 2})
result = df.diff(axis=1)
tm.assert_frame_equal(result, expected)
# GH#21437 mixed-float-dtypes
df = DataFrame(
{"a": np.arange(3, dtype="float32"), "b": np.arange(3, dtype="float64")}
)
result = df.diff(axis=1)
expected = DataFrame({"a": df["a"] * np.nan, "b": df["b"] * 0})
tm.assert_frame_equal(result, expected)
def test_diff_axis1_mixed_dtypes_large_periods(self):
# GH#32995 operate column-wise when we have mixed dtypes and axis=1
df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
expected = df * np.nan
result = df.diff(axis=1, periods=3)
tm.assert_frame_equal(result, expected)
def test_diff_axis1_mixed_dtypes_negative_periods(self):
# GH#32995 operate column-wise when we have mixed dtypes and axis=1
df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
expected = DataFrame({"A": -1.0 * df["A"], "B": df["B"] * np.nan})
result = df.diff(axis=1, periods=-1)
tm.assert_frame_equal(result, expected)
def test_diff_sparse(self):
# GH#28813 .diff() should work for sparse dataframes as well
sparse_df = DataFrame([[0, 1], [1, 0]], dtype="Sparse[int]")
result = sparse_df.diff()
expected = DataFrame(
[[np.nan, np.nan], [1.0, -1.0]], dtype=pd.SparseDtype("float", 0.0)
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"axis,expected",
[
(
0,
DataFrame(
{
"a": [np.nan, 0, 1, 0, np.nan, np.nan, np.nan, 0],
"b": [np.nan, 1, np.nan, np.nan, -2, 1, np.nan, np.nan],
"c": np.repeat(np.nan, 8),
"d": [np.nan, 3, 5, 7, 9, 11, 13, 15],
},
dtype="Int64",
),
),
(
1,
DataFrame(
{
"a": np.repeat(np.nan, 8),
"b": [0, 1, np.nan, 1, np.nan, np.nan, np.nan, 0],
"c": np.repeat(np.nan, 8),
"d": np.repeat(np.nan, 8),
},
dtype="Int64",
),
),
],
)
def test_diff_integer_na(self, axis, expected):
# GH#24171 IntegerNA Support for DataFrame.diff()
df = DataFrame(
{
"a": np.repeat([0, 1, np.nan, 2], 2),
"b": np.tile([0, 1, np.nan, 2], 2),
"c": np.repeat(np.nan, 8),
"d": np.arange(1, 9) ** 2,
},
dtype="Int64",
)
# Test case for default behaviour of diff
result = df.diff(axis=axis)
tm.assert_frame_equal(result, expected)
def test_diff_readonly(self):
# https://github.com/pandas-dev/pandas/issues/35559
arr = np.random.randn(5, 2)
arr.flags.writeable = False
df = DataFrame(arr)
result = df.diff()
expected = DataFrame(np.array(df)).diff()
tm.assert_frame_equal(result, expected)
def test_diff_all_int_dtype(self, any_int_numpy_dtype):
# GH 14773
df = DataFrame(range(5))
df = df.astype(any_int_numpy_dtype)
result = df.diff()
expected_dtype = (
"float32" if any_int_numpy_dtype in ("int8", "int16") else "float64"
)
expected = DataFrame([np.nan, 1.0, 1.0, 1.0, 1.0], dtype=expected_dtype)
tm.assert_frame_equal(result, expected)