ai-content-maker/.venv/Lib/site-packages/pandas/tests/frame/methods/test_explode.py

278 lines
8.0 KiB
Python

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
def test_error():
df = pd.DataFrame(
{"A": pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd")), "B": 1}
)
with pytest.raises(
ValueError, match="column must be a scalar, tuple, or list thereof"
):
df.explode([list("AA")])
with pytest.raises(ValueError, match="column must be unique"):
df.explode(list("AA"))
df.columns = list("AA")
with pytest.raises(ValueError, match="columns must be unique"):
df.explode("A")
@pytest.mark.parametrize(
"input_subset, error_message",
[
(
list("AC"),
"columns must have matching element counts",
),
(
[],
"column must be nonempty",
),
(
list("AC"),
"columns must have matching element counts",
),
],
)
def test_error_multi_columns(input_subset, error_message):
# GH 39240
df = pd.DataFrame(
{
"A": [[0, 1, 2], np.nan, [], (3, 4)],
"B": 1,
"C": [["a", "b", "c"], "foo", [], ["d", "e", "f"]],
},
index=list("abcd"),
)
with pytest.raises(ValueError, match=error_message):
df.explode(input_subset)
@pytest.mark.parametrize(
"scalar",
["a", 0, 1.5, pd.Timedelta("1 days"), pd.Timestamp("2019-12-31")],
)
def test_basic(scalar):
df = pd.DataFrame(
{scalar: pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd")), "B": 1}
)
result = df.explode(scalar)
expected = pd.DataFrame(
{
scalar: pd.Series(
[0, 1, 2, np.nan, np.nan, 3, 4], index=list("aaabcdd"), dtype=object
),
"B": 1,
}
)
tm.assert_frame_equal(result, expected)
def test_multi_index_rows():
df = pd.DataFrame(
{"A": np.array([[0, 1, 2], np.nan, [], (3, 4)], dtype=object), "B": 1},
index=pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)]),
)
result = df.explode("A")
expected = pd.DataFrame(
{
"A": pd.Series(
[0, 1, 2, np.nan, np.nan, 3, 4],
index=pd.MultiIndex.from_tuples(
[
("a", 1),
("a", 1),
("a", 1),
("a", 2),
("b", 1),
("b", 2),
("b", 2),
]
),
dtype=object,
),
"B": 1,
}
)
tm.assert_frame_equal(result, expected)
def test_multi_index_columns():
df = pd.DataFrame(
{("A", 1): np.array([[0, 1, 2], np.nan, [], (3, 4)], dtype=object), ("A", 2): 1}
)
result = df.explode(("A", 1))
expected = pd.DataFrame(
{
("A", 1): pd.Series(
[0, 1, 2, np.nan, np.nan, 3, 4],
index=pd.Index([0, 0, 0, 1, 2, 3, 3]),
dtype=object,
),
("A", 2): 1,
}
)
tm.assert_frame_equal(result, expected)
def test_usecase():
# explode a single column
# gh-10511
df = pd.DataFrame(
[[11, range(5), 10], [22, range(3), 20]], columns=list("ABC")
).set_index("C")
result = df.explode("B")
expected = pd.DataFrame(
{
"A": [11, 11, 11, 11, 11, 22, 22, 22],
"B": np.array([0, 1, 2, 3, 4, 0, 1, 2], dtype=object),
"C": [10, 10, 10, 10, 10, 20, 20, 20],
},
columns=list("ABC"),
).set_index("C")
tm.assert_frame_equal(result, expected)
# gh-8517
df = pd.DataFrame(
[["2014-01-01", "Alice", "A B"], ["2014-01-02", "Bob", "C D"]],
columns=["dt", "name", "text"],
)
result = df.assign(text=df.text.str.split(" ")).explode("text")
expected = pd.DataFrame(
[
["2014-01-01", "Alice", "A"],
["2014-01-01", "Alice", "B"],
["2014-01-02", "Bob", "C"],
["2014-01-02", "Bob", "D"],
],
columns=["dt", "name", "text"],
index=[0, 0, 1, 1],
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"input_dict, input_index, expected_dict, expected_index",
[
(
{"col1": [[1, 2], [3, 4]], "col2": ["foo", "bar"]},
[0, 0],
{"col1": [1, 2, 3, 4], "col2": ["foo", "foo", "bar", "bar"]},
[0, 0, 0, 0],
),
(
{"col1": [[1, 2], [3, 4]], "col2": ["foo", "bar"]},
pd.Index([0, 0], name="my_index"),
{"col1": [1, 2, 3, 4], "col2": ["foo", "foo", "bar", "bar"]},
pd.Index([0, 0, 0, 0], name="my_index"),
),
(
{"col1": [[1, 2], [3, 4]], "col2": ["foo", "bar"]},
pd.MultiIndex.from_arrays(
[[0, 0], [1, 1]], names=["my_first_index", "my_second_index"]
),
{"col1": [1, 2, 3, 4], "col2": ["foo", "foo", "bar", "bar"]},
pd.MultiIndex.from_arrays(
[[0, 0, 0, 0], [1, 1, 1, 1]],
names=["my_first_index", "my_second_index"],
),
),
(
{"col1": [[1, 2], [3, 4]], "col2": ["foo", "bar"]},
pd.MultiIndex.from_arrays([[0, 0], [1, 1]], names=["my_index", None]),
{"col1": [1, 2, 3, 4], "col2": ["foo", "foo", "bar", "bar"]},
pd.MultiIndex.from_arrays(
[[0, 0, 0, 0], [1, 1, 1, 1]], names=["my_index", None]
),
),
],
)
def test_duplicate_index(input_dict, input_index, expected_dict, expected_index):
# GH 28005
df = pd.DataFrame(input_dict, index=input_index)
result = df.explode("col1")
expected = pd.DataFrame(expected_dict, index=expected_index, dtype=object)
tm.assert_frame_equal(result, expected)
def test_ignore_index():
# GH 34932
df = pd.DataFrame({"id": range(0, 20, 10), "values": [list("ab"), list("cd")]})
result = df.explode("values", ignore_index=True)
expected = pd.DataFrame(
{"id": [0, 0, 10, 10], "values": list("abcd")}, index=[0, 1, 2, 3]
)
tm.assert_frame_equal(result, expected)
def test_explode_sets():
# https://github.com/pandas-dev/pandas/issues/35614
df = pd.DataFrame({"a": [{"x", "y"}], "b": [1]}, index=[1])
result = df.explode(column="a").sort_values(by="a")
expected = pd.DataFrame({"a": ["x", "y"], "b": [1, 1]}, index=[1, 1])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"input_subset, expected_dict, expected_index",
[
(
list("AC"),
{
"A": pd.Series(
[0, 1, 2, np.nan, np.nan, 3, 4, np.nan],
index=list("aaabcdde"),
dtype=object,
),
"B": 1,
"C": ["a", "b", "c", "foo", np.nan, "d", "e", np.nan],
},
list("aaabcdde"),
),
(
list("A"),
{
"A": pd.Series(
[0, 1, 2, np.nan, np.nan, 3, 4, np.nan],
index=list("aaabcdde"),
dtype=object,
),
"B": 1,
"C": [
["a", "b", "c"],
["a", "b", "c"],
["a", "b", "c"],
"foo",
[],
["d", "e"],
["d", "e"],
np.nan,
],
},
list("aaabcdde"),
),
],
)
def test_multi_columns(input_subset, expected_dict, expected_index):
# GH 39240
df = pd.DataFrame(
{
"A": [[0, 1, 2], np.nan, [], (3, 4), np.nan],
"B": 1,
"C": [["a", "b", "c"], "foo", [], ["d", "e"], np.nan],
},
index=list("abcde"),
)
result = df.explode(input_subset)
expected = pd.DataFrame(expected_dict, expected_index)
tm.assert_frame_equal(result, expected)