ai-content-maker/.venv/Lib/site-packages/pandas/tests/frame/methods/test_replace.py

1588 lines
57 KiB
Python

from __future__ import annotations
from datetime import datetime
import re
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
@pytest.fixture
def mix_ab() -> dict[str, list[int | str]]:
return {"a": list(range(4)), "b": list("ab..")}
@pytest.fixture
def mix_abc() -> dict[str, list[float | str]]:
return {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]}
class TestDataFrameReplace:
def test_replace_inplace(self, datetime_frame, float_string_frame):
datetime_frame["A"][:5] = np.nan
datetime_frame["A"][-5:] = np.nan
tsframe = datetime_frame.copy()
return_value = tsframe.replace(np.nan, 0, inplace=True)
assert return_value is None
tm.assert_frame_equal(tsframe, datetime_frame.fillna(0))
# mixed type
mf = float_string_frame
mf.iloc[5:20, mf.columns.get_loc("foo")] = np.nan
mf.iloc[-10:, mf.columns.get_loc("A")] = np.nan
result = float_string_frame.replace(np.nan, 0)
expected = float_string_frame.fillna(value=0)
tm.assert_frame_equal(result, expected)
tsframe = datetime_frame.copy()
return_value = tsframe.replace([np.nan], [0], inplace=True)
assert return_value is None
tm.assert_frame_equal(tsframe, datetime_frame.fillna(0))
@pytest.mark.parametrize(
"to_replace,values,expected",
[
# lists of regexes and values
# list of [re1, re2, ..., reN] -> [v1, v2, ..., vN]
(
[r"\s*\.\s*", r"e|f|g"],
[np.nan, "crap"],
{
"a": ["a", "b", np.nan, np.nan],
"b": ["crap"] * 3 + ["h"],
"c": ["h", "crap", "l", "o"],
},
),
# list of [re1, re2, ..., reN] -> [re1, re2, .., reN]
(
[r"\s*(\.)\s*", r"(e|f|g)"],
[r"\1\1", r"\1_crap"],
{
"a": ["a", "b", "..", ".."],
"b": ["e_crap", "f_crap", "g_crap", "h"],
"c": ["h", "e_crap", "l", "o"],
},
),
# list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN
# or vN)]
(
[r"\s*(\.)\s*", r"e"],
[r"\1\1", r"crap"],
{
"a": ["a", "b", "..", ".."],
"b": ["crap", "f", "g", "h"],
"c": ["h", "crap", "l", "o"],
},
),
],
)
@pytest.mark.parametrize("inplace", [True, False])
@pytest.mark.parametrize("use_value_regex_args", [True, False])
def test_regex_replace_list_obj(
self, to_replace, values, expected, inplace, use_value_regex_args
):
df = DataFrame({"a": list("ab.."), "b": list("efgh"), "c": list("helo")})
if use_value_regex_args:
result = df.replace(value=values, regex=to_replace, inplace=inplace)
else:
result = df.replace(to_replace, values, regex=True, inplace=inplace)
if inplace:
assert result is None
result = df
expected = DataFrame(expected)
tm.assert_frame_equal(result, expected)
def test_regex_replace_list_mixed(self, mix_ab):
# mixed frame to make sure this doesn't break things
dfmix = DataFrame(mix_ab)
# lists of regexes and values
# list of [re1, re2, ..., reN] -> [v1, v2, ..., vN]
to_replace_res = [r"\s*\.\s*", r"a"]
values = [np.nan, "crap"]
mix2 = {"a": list(range(4)), "b": list("ab.."), "c": list("halo")}
dfmix2 = DataFrame(mix2)
res = dfmix2.replace(to_replace_res, values, regex=True)
expec = DataFrame(
{
"a": mix2["a"],
"b": ["crap", "b", np.nan, np.nan],
"c": ["h", "crap", "l", "o"],
}
)
tm.assert_frame_equal(res, expec)
# list of [re1, re2, ..., reN] -> [re1, re2, .., reN]
to_replace_res = [r"\s*(\.)\s*", r"(a|b)"]
values = [r"\1\1", r"\1_crap"]
res = dfmix.replace(to_replace_res, values, regex=True)
expec = DataFrame({"a": mix_ab["a"], "b": ["a_crap", "b_crap", "..", ".."]})
tm.assert_frame_equal(res, expec)
# list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN
# or vN)]
to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"]
values = [r"\1\1", r"crap", r"\1_crap"]
res = dfmix.replace(to_replace_res, values, regex=True)
expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]})
tm.assert_frame_equal(res, expec)
to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"]
values = [r"\1\1", r"crap", r"\1_crap"]
res = dfmix.replace(regex=to_replace_res, value=values)
expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]})
tm.assert_frame_equal(res, expec)
def test_regex_replace_list_mixed_inplace(self, mix_ab):
dfmix = DataFrame(mix_ab)
# the same inplace
# lists of regexes and values
# list of [re1, re2, ..., reN] -> [v1, v2, ..., vN]
to_replace_res = [r"\s*\.\s*", r"a"]
values = [np.nan, "crap"]
res = dfmix.copy()
return_value = res.replace(to_replace_res, values, inplace=True, regex=True)
assert return_value is None
expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b", np.nan, np.nan]})
tm.assert_frame_equal(res, expec)
# list of [re1, re2, ..., reN] -> [re1, re2, .., reN]
to_replace_res = [r"\s*(\.)\s*", r"(a|b)"]
values = [r"\1\1", r"\1_crap"]
res = dfmix.copy()
return_value = res.replace(to_replace_res, values, inplace=True, regex=True)
assert return_value is None
expec = DataFrame({"a": mix_ab["a"], "b": ["a_crap", "b_crap", "..", ".."]})
tm.assert_frame_equal(res, expec)
# list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN
# or vN)]
to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"]
values = [r"\1\1", r"crap", r"\1_crap"]
res = dfmix.copy()
return_value = res.replace(to_replace_res, values, inplace=True, regex=True)
assert return_value is None
expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]})
tm.assert_frame_equal(res, expec)
to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"]
values = [r"\1\1", r"crap", r"\1_crap"]
res = dfmix.copy()
return_value = res.replace(regex=to_replace_res, value=values, inplace=True)
assert return_value is None
expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]})
tm.assert_frame_equal(res, expec)
def test_regex_replace_dict_mixed(self, mix_abc):
dfmix = DataFrame(mix_abc)
# dicts
# single dict {re1: v1}, search the whole frame
# need test for this...
# list of dicts {re1: v1, re2: v2, ..., re3: v3}, search the whole
# frame
res = dfmix.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True)
res2 = dfmix.copy()
return_value = res2.replace(
{"b": r"\s*\.\s*"}, {"b": np.nan}, inplace=True, regex=True
)
assert return_value is None
expec = DataFrame(
{"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]}
)
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
# list of dicts {re1: re11, re2: re12, ..., reN: re1N}, search the
# whole frame
res = dfmix.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True)
res2 = dfmix.copy()
return_value = res2.replace(
{"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, inplace=True, regex=True
)
assert return_value is None
expec = DataFrame(
{"a": mix_abc["a"], "b": ["a", "b", ".ty", ".ty"], "c": mix_abc["c"]}
)
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
res = dfmix.replace(regex={"b": r"\s*(\.)\s*"}, value={"b": r"\1ty"})
res2 = dfmix.copy()
return_value = res2.replace(
regex={"b": r"\s*(\.)\s*"}, value={"b": r"\1ty"}, inplace=True
)
assert return_value is None
expec = DataFrame(
{"a": mix_abc["a"], "b": ["a", "b", ".ty", ".ty"], "c": mix_abc["c"]}
)
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
# scalar -> dict
# to_replace regex, {value: value}
expec = DataFrame(
{"a": mix_abc["a"], "b": [np.nan, "b", ".", "."], "c": mix_abc["c"]}
)
res = dfmix.replace("a", {"b": np.nan}, regex=True)
res2 = dfmix.copy()
return_value = res2.replace("a", {"b": np.nan}, regex=True, inplace=True)
assert return_value is None
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
res = dfmix.replace("a", {"b": np.nan}, regex=True)
res2 = dfmix.copy()
return_value = res2.replace(regex="a", value={"b": np.nan}, inplace=True)
assert return_value is None
expec = DataFrame(
{"a": mix_abc["a"], "b": [np.nan, "b", ".", "."], "c": mix_abc["c"]}
)
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
def test_regex_replace_dict_nested(self, mix_abc):
# nested dicts will not work until this is implemented for Series
dfmix = DataFrame(mix_abc)
res = dfmix.replace({"b": {r"\s*\.\s*": np.nan}}, regex=True)
res2 = dfmix.copy()
res4 = dfmix.copy()
return_value = res2.replace(
{"b": {r"\s*\.\s*": np.nan}}, inplace=True, regex=True
)
assert return_value is None
res3 = dfmix.replace(regex={"b": {r"\s*\.\s*": np.nan}})
return_value = res4.replace(regex={"b": {r"\s*\.\s*": np.nan}}, inplace=True)
assert return_value is None
expec = DataFrame(
{"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]}
)
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
tm.assert_frame_equal(res3, expec)
tm.assert_frame_equal(res4, expec)
def test_regex_replace_dict_nested_non_first_character(self, any_string_dtype):
# GH 25259
dtype = any_string_dtype
df = DataFrame({"first": ["abc", "bca", "cab"]}, dtype=dtype)
expected = DataFrame({"first": [".bc", "bc.", "c.b"]}, dtype=dtype)
result = df.replace({"a": "."}, regex=True)
tm.assert_frame_equal(result, expected)
def test_regex_replace_dict_nested_gh4115(self):
df = DataFrame({"Type": ["Q", "T", "Q", "Q", "T"], "tmp": 2})
expected = DataFrame({"Type": [0, 1, 0, 0, 1], "tmp": 2})
result = df.replace({"Type": {"Q": 0, "T": 1}})
tm.assert_frame_equal(result, expected)
def test_regex_replace_list_to_scalar(self, mix_abc):
df = DataFrame(mix_abc)
expec = DataFrame(
{
"a": mix_abc["a"],
"b": np.array([np.nan] * 4),
"c": [np.nan, np.nan, np.nan, "d"],
}
)
res = df.replace([r"\s*\.\s*", "a|b"], np.nan, regex=True)
res2 = df.copy()
res3 = df.copy()
return_value = res2.replace(
[r"\s*\.\s*", "a|b"], np.nan, regex=True, inplace=True
)
assert return_value is None
return_value = res3.replace(
regex=[r"\s*\.\s*", "a|b"], value=np.nan, inplace=True
)
assert return_value is None
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
tm.assert_frame_equal(res3, expec)
def test_regex_replace_str_to_numeric(self, mix_abc):
# what happens when you try to replace a numeric value with a regex?
df = DataFrame(mix_abc)
res = df.replace(r"\s*\.\s*", 0, regex=True)
res2 = df.copy()
return_value = res2.replace(r"\s*\.\s*", 0, inplace=True, regex=True)
assert return_value is None
res3 = df.copy()
return_value = res3.replace(regex=r"\s*\.\s*", value=0, inplace=True)
assert return_value is None
expec = DataFrame({"a": mix_abc["a"], "b": ["a", "b", 0, 0], "c": mix_abc["c"]})
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
tm.assert_frame_equal(res3, expec)
def test_regex_replace_regex_list_to_numeric(self, mix_abc):
df = DataFrame(mix_abc)
res = df.replace([r"\s*\.\s*", "b"], 0, regex=True)
res2 = df.copy()
return_value = res2.replace([r"\s*\.\s*", "b"], 0, regex=True, inplace=True)
assert return_value is None
res3 = df.copy()
return_value = res3.replace(regex=[r"\s*\.\s*", "b"], value=0, inplace=True)
assert return_value is None
expec = DataFrame(
{"a": mix_abc["a"], "b": ["a", 0, 0, 0], "c": ["a", 0, np.nan, "d"]}
)
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
tm.assert_frame_equal(res3, expec)
def test_regex_replace_series_of_regexes(self, mix_abc):
df = DataFrame(mix_abc)
s1 = Series({"b": r"\s*\.\s*"})
s2 = Series({"b": np.nan})
res = df.replace(s1, s2, regex=True)
res2 = df.copy()
return_value = res2.replace(s1, s2, inplace=True, regex=True)
assert return_value is None
res3 = df.copy()
return_value = res3.replace(regex=s1, value=s2, inplace=True)
assert return_value is None
expec = DataFrame(
{"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]}
)
tm.assert_frame_equal(res, expec)
tm.assert_frame_equal(res2, expec)
tm.assert_frame_equal(res3, expec)
def test_regex_replace_numeric_to_object_conversion(self, mix_abc):
df = DataFrame(mix_abc)
expec = DataFrame({"a": ["a", 1, 2, 3], "b": mix_abc["b"], "c": mix_abc["c"]})
res = df.replace(0, "a")
tm.assert_frame_equal(res, expec)
assert res.a.dtype == np.object_
@pytest.mark.parametrize(
"to_replace", [{"": np.nan, ",": ""}, {",": "", "": np.nan}]
)
def test_joint_simple_replace_and_regex_replace(self, to_replace):
# GH-39338
df = DataFrame(
{
"col1": ["1,000", "a", "3"],
"col2": ["a", "", "b"],
"col3": ["a", "b", "c"],
}
)
result = df.replace(regex=to_replace)
expected = DataFrame(
{
"col1": ["1000", "a", "3"],
"col2": ["a", np.nan, "b"],
"col3": ["a", "b", "c"],
}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("metachar", ["[]", "()", r"\d", r"\w", r"\s"])
def test_replace_regex_metachar(self, metachar):
df = DataFrame({"a": [metachar, "else"]})
result = df.replace({"a": {metachar: "paren"}})
expected = DataFrame({"a": ["paren", "else"]})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data,to_replace,expected",
[
(["xax", "xbx"], {"a": "c", "b": "d"}, ["xcx", "xdx"]),
(["d", "", ""], {r"^\s*$": pd.NA}, ["d", pd.NA, pd.NA]),
],
)
def test_regex_replace_string_types(
self, data, to_replace, expected, frame_or_series, any_string_dtype
):
# GH-41333, GH-35977
dtype = any_string_dtype
obj = frame_or_series(data, dtype=dtype)
result = obj.replace(to_replace, regex=True)
expected = frame_or_series(expected, dtype=dtype)
tm.assert_equal(result, expected)
def test_replace(self, datetime_frame):
datetime_frame["A"][:5] = np.nan
datetime_frame["A"][-5:] = np.nan
zero_filled = datetime_frame.replace(np.nan, -1e8)
tm.assert_frame_equal(zero_filled, datetime_frame.fillna(-1e8))
tm.assert_frame_equal(zero_filled.replace(-1e8, np.nan), datetime_frame)
datetime_frame["A"][:5] = np.nan
datetime_frame["A"][-5:] = np.nan
datetime_frame["B"][:5] = -1e8
# empty
df = DataFrame(index=["a", "b"])
tm.assert_frame_equal(df, df.replace(5, 7))
# GH 11698
# test for mixed data types.
df = DataFrame(
[("-", pd.to_datetime("20150101")), ("a", pd.to_datetime("20150102"))]
)
df1 = df.replace("-", np.nan)
expected_df = DataFrame(
[(np.nan, pd.to_datetime("20150101")), ("a", pd.to_datetime("20150102"))]
)
tm.assert_frame_equal(df1, expected_df)
def test_replace_list(self):
obj = {"a": list("ab.."), "b": list("efgh"), "c": list("helo")}
dfobj = DataFrame(obj)
# lists of regexes and values
# list of [v1, v2, ..., vN] -> [v1, v2, ..., vN]
to_replace_res = [r".", r"e"]
values = [np.nan, "crap"]
res = dfobj.replace(to_replace_res, values)
expec = DataFrame(
{
"a": ["a", "b", np.nan, np.nan],
"b": ["crap", "f", "g", "h"],
"c": ["h", "crap", "l", "o"],
}
)
tm.assert_frame_equal(res, expec)
# list of [v1, v2, ..., vN] -> [v1, v2, .., vN]
to_replace_res = [r".", r"f"]
values = [r"..", r"crap"]
res = dfobj.replace(to_replace_res, values)
expec = DataFrame(
{
"a": ["a", "b", "..", ".."],
"b": ["e", "crap", "g", "h"],
"c": ["h", "e", "l", "o"],
}
)
tm.assert_frame_equal(res, expec)
def test_replace_with_empty_list(self, frame_or_series):
# GH 21977
ser = Series([["a", "b"], [], np.nan, [1]])
obj = DataFrame({"col": ser})
obj = tm.get_obj(obj, frame_or_series)
expected = obj
result = obj.replace([], np.nan)
tm.assert_equal(result, expected)
# GH 19266
msg = (
"NumPy boolean array indexing assignment cannot assign {size} "
"input values to the 1 output values where the mask is true"
)
with pytest.raises(ValueError, match=msg.format(size=0)):
obj.replace({np.nan: []})
with pytest.raises(ValueError, match=msg.format(size=2)):
obj.replace({np.nan: ["dummy", "alt"]})
def test_replace_series_dict(self):
# from GH 3064
df = DataFrame({"zero": {"a": 0.0, "b": 1}, "one": {"a": 2.0, "b": 0}})
result = df.replace(0, {"zero": 0.5, "one": 1.0})
expected = DataFrame({"zero": {"a": 0.5, "b": 1}, "one": {"a": 2.0, "b": 1.0}})
tm.assert_frame_equal(result, expected)
result = df.replace(0, df.mean())
tm.assert_frame_equal(result, expected)
# series to series/dict
df = DataFrame({"zero": {"a": 0.0, "b": 1}, "one": {"a": 2.0, "b": 0}})
s = Series({"zero": 0.0, "one": 2.0})
result = df.replace(s, {"zero": 0.5, "one": 1.0})
expected = DataFrame({"zero": {"a": 0.5, "b": 1}, "one": {"a": 1.0, "b": 0.0}})
tm.assert_frame_equal(result, expected)
result = df.replace(s, df.mean())
tm.assert_frame_equal(result, expected)
def test_replace_convert(self):
# gh 3907
df = DataFrame([["foo", "bar", "bah"], ["bar", "foo", "bah"]])
m = {"foo": 1, "bar": 2, "bah": 3}
rep = df.replace(m)
expec = Series([np.int64] * 3)
res = rep.dtypes
tm.assert_series_equal(expec, res)
def test_replace_mixed(self, float_string_frame):
mf = float_string_frame
mf.iloc[5:20, mf.columns.get_loc("foo")] = np.nan
mf.iloc[-10:, mf.columns.get_loc("A")] = np.nan
result = float_string_frame.replace(np.nan, -18)
expected = float_string_frame.fillna(value=-18)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result.replace(-18, np.nan), float_string_frame)
result = float_string_frame.replace(np.nan, -1e8)
expected = float_string_frame.fillna(value=-1e8)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result.replace(-1e8, np.nan), float_string_frame)
def test_replace_mixed_int_block_upcasting(self):
# int block upcasting
df = DataFrame(
{
"A": Series([1.0, 2.0], dtype="float64"),
"B": Series([0, 1], dtype="int64"),
}
)
expected = DataFrame(
{
"A": Series([1.0, 2.0], dtype="float64"),
"B": Series([0.5, 1], dtype="float64"),
}
)
result = df.replace(0, 0.5)
tm.assert_frame_equal(result, expected)
return_value = df.replace(0, 0.5, inplace=True)
assert return_value is None
tm.assert_frame_equal(df, expected)
def test_replace_mixed_int_block_splitting(self):
# int block splitting
df = DataFrame(
{
"A": Series([1.0, 2.0], dtype="float64"),
"B": Series([0, 1], dtype="int64"),
"C": Series([1, 2], dtype="int64"),
}
)
expected = DataFrame(
{
"A": Series([1.0, 2.0], dtype="float64"),
"B": Series([0.5, 1], dtype="float64"),
"C": Series([1, 2], dtype="int64"),
}
)
result = df.replace(0, 0.5)
tm.assert_frame_equal(result, expected)
def test_replace_mixed2(self):
# to object block upcasting
df = DataFrame(
{
"A": Series([1.0, 2.0], dtype="float64"),
"B": Series([0, 1], dtype="int64"),
}
)
expected = DataFrame(
{
"A": Series([1, "foo"], dtype="object"),
"B": Series([0, 1], dtype="int64"),
}
)
result = df.replace(2, "foo")
tm.assert_frame_equal(result, expected)
expected = DataFrame(
{
"A": Series(["foo", "bar"], dtype="object"),
"B": Series([0, "foo"], dtype="object"),
}
)
result = df.replace([1, 2], ["foo", "bar"])
tm.assert_frame_equal(result, expected)
def test_replace_mixed3(self):
# test case from
df = DataFrame(
{"A": Series([3, 0], dtype="int64"), "B": Series([0, 3], dtype="int64")}
)
result = df.replace(3, df.mean().to_dict())
expected = df.copy().astype("float64")
m = df.mean()
expected.iloc[0, 0] = m[0]
expected.iloc[1, 1] = m[1]
tm.assert_frame_equal(result, expected)
def test_replace_nullable_int_with_string_doesnt_cast(self):
# GH#25438 don't cast df['a'] to float64
df = DataFrame({"a": [1, 2, 3, np.nan], "b": ["some", "strings", "here", "he"]})
df["a"] = df["a"].astype("Int64")
res = df.replace("", np.nan)
tm.assert_series_equal(res["a"], df["a"])
@pytest.mark.parametrize("dtype", ["boolean", "Int64", "Float64"])
def test_replace_with_nullable_column(self, dtype):
# GH-44499
nullable_ser = Series([1, 0, 1], dtype=dtype)
df = DataFrame({"A": ["A", "B", "x"], "B": nullable_ser})
result = df.replace("x", "X")
expected = DataFrame({"A": ["A", "B", "X"], "B": nullable_ser})
tm.assert_frame_equal(result, expected)
def test_replace_simple_nested_dict(self):
df = DataFrame({"col": range(1, 5)})
expected = DataFrame({"col": ["a", 2, 3, "b"]})
result = df.replace({"col": {1: "a", 4: "b"}})
tm.assert_frame_equal(expected, result)
# in this case, should be the same as the not nested version
result = df.replace({1: "a", 4: "b"})
tm.assert_frame_equal(expected, result)
def test_replace_simple_nested_dict_with_nonexistent_value(self):
df = DataFrame({"col": range(1, 5)})
expected = DataFrame({"col": ["a", 2, 3, "b"]})
result = df.replace({-1: "-", 1: "a", 4: "b"})
tm.assert_frame_equal(expected, result)
result = df.replace({"col": {-1: "-", 1: "a", 4: "b"}})
tm.assert_frame_equal(expected, result)
def test_replace_NA_with_None(self):
# gh-45601
df = DataFrame({"value": [42, None]}).astype({"value": "Int64"})
result = df.replace({pd.NA: None})
expected = DataFrame({"value": [42, None]}, dtype=object)
tm.assert_frame_equal(result, expected)
def test_replace_NAT_with_None(self):
# gh-45836
df = DataFrame([pd.NaT, pd.NaT])
result = df.replace({pd.NaT: None, np.NaN: None})
expected = DataFrame([None, None])
tm.assert_frame_equal(result, expected)
def test_replace_with_None_keeps_categorical(self):
# gh-46634
cat_series = Series(["b", "b", "b", "d"], dtype="category")
df = DataFrame(
{
"id": Series([5, 4, 3, 2], dtype="float64"),
"col": cat_series,
}
)
result = df.replace({3: None})
expected = DataFrame(
{
"id": Series([5.0, 4.0, None, 2.0], dtype="object"),
"col": cat_series,
}
)
tm.assert_frame_equal(result, expected)
def test_replace_value_is_none(self, datetime_frame):
orig_value = datetime_frame.iloc[0, 0]
orig2 = datetime_frame.iloc[1, 0]
datetime_frame.iloc[0, 0] = np.nan
datetime_frame.iloc[1, 0] = 1
result = datetime_frame.replace(to_replace={np.nan: 0})
expected = datetime_frame.T.replace(to_replace={np.nan: 0}).T
tm.assert_frame_equal(result, expected)
result = datetime_frame.replace(to_replace={np.nan: 0, 1: -1e8})
tsframe = datetime_frame.copy()
tsframe.iloc[0, 0] = 0
tsframe.iloc[1, 0] = -1e8
expected = tsframe
tm.assert_frame_equal(expected, result)
datetime_frame.iloc[0, 0] = orig_value
datetime_frame.iloc[1, 0] = orig2
def test_replace_for_new_dtypes(self, datetime_frame):
# dtypes
tsframe = datetime_frame.copy().astype(np.float32)
tsframe["A"][:5] = np.nan
tsframe["A"][-5:] = np.nan
zero_filled = tsframe.replace(np.nan, -1e8)
tm.assert_frame_equal(zero_filled, tsframe.fillna(-1e8))
tm.assert_frame_equal(zero_filled.replace(-1e8, np.nan), tsframe)
tsframe["A"][:5] = np.nan
tsframe["A"][-5:] = np.nan
tsframe["B"][:5] = -1e8
b = tsframe["B"]
b[b == -1e8] = np.nan
tsframe["B"] = b
result = tsframe.fillna(method="bfill")
tm.assert_frame_equal(result, tsframe.fillna(method="bfill"))
@pytest.mark.parametrize(
"frame, to_replace, value, expected",
[
(DataFrame({"ints": [1, 2, 3]}), 1, 0, DataFrame({"ints": [0, 2, 3]})),
(
DataFrame({"ints": [1, 2, 3]}, dtype=np.int32),
1,
0,
DataFrame({"ints": [0, 2, 3]}, dtype=np.int32),
),
(
DataFrame({"ints": [1, 2, 3]}, dtype=np.int16),
1,
0,
DataFrame({"ints": [0, 2, 3]}, dtype=np.int16),
),
(
DataFrame({"bools": [True, False, True]}),
False,
True,
DataFrame({"bools": [True, True, True]}),
),
(
DataFrame({"complex": [1j, 2j, 3j]}),
1j,
0,
DataFrame({"complex": [0j, 2j, 3j]}),
),
(
DataFrame(
{
"datetime64": Index(
[
datetime(2018, 5, 28),
datetime(2018, 7, 28),
datetime(2018, 5, 28),
]
)
}
),
datetime(2018, 5, 28),
datetime(2018, 7, 28),
DataFrame({"datetime64": Index([datetime(2018, 7, 28)] * 3)}),
),
# GH 20380
(
DataFrame({"dt": [datetime(3017, 12, 20)], "str": ["foo"]}),
"foo",
"bar",
DataFrame({"dt": [datetime(3017, 12, 20)], "str": ["bar"]}),
),
# GH 36782
(
DataFrame({"dt": [datetime(2920, 10, 1)]}),
datetime(2920, 10, 1),
datetime(2020, 10, 1),
DataFrame({"dt": [datetime(2020, 10, 1)]}),
),
(
DataFrame(
{
"A": date_range("20130101", periods=3, tz="US/Eastern"),
"B": [0, np.nan, 2],
}
),
Timestamp("20130102", tz="US/Eastern"),
Timestamp("20130104", tz="US/Eastern"),
DataFrame(
{
"A": [
Timestamp("20130101", tz="US/Eastern"),
Timestamp("20130104", tz="US/Eastern"),
Timestamp("20130103", tz="US/Eastern"),
],
"B": [0, np.nan, 2],
}
),
),
# GH 35376
(
DataFrame([[1, 1.0], [2, 2.0]]),
1.0,
5,
DataFrame([[5, 5.0], [2, 2.0]]),
),
(
DataFrame([[1, 1.0], [2, 2.0]]),
1,
5,
DataFrame([[5, 5.0], [2, 2.0]]),
),
(
DataFrame([[1, 1.0], [2, 2.0]]),
1.0,
5.0,
DataFrame([[5, 5.0], [2, 2.0]]),
),
(
DataFrame([[1, 1.0], [2, 2.0]]),
1,
5.0,
DataFrame([[5, 5.0], [2, 2.0]]),
),
],
)
def test_replace_dtypes(self, frame, to_replace, value, expected):
result = getattr(frame, "replace")(to_replace, value)
tm.assert_frame_equal(result, expected)
def test_replace_input_formats_listlike(self):
# both dicts
to_rep = {"A": np.nan, "B": 0, "C": ""}
values = {"A": 0, "B": -1, "C": "missing"}
df = DataFrame(
{"A": [np.nan, 0, np.inf], "B": [0, 2, 5], "C": ["", "asdf", "fd"]}
)
filled = df.replace(to_rep, values)
expected = {k: v.replace(to_rep[k], values[k]) for k, v in df.items()}
tm.assert_frame_equal(filled, DataFrame(expected))
result = df.replace([0, 2, 5], [5, 2, 0])
expected = DataFrame(
{"A": [np.nan, 5, np.inf], "B": [5, 2, 0], "C": ["", "asdf", "fd"]}
)
tm.assert_frame_equal(result, expected)
# scalar to dict
values = {"A": 0, "B": -1, "C": "missing"}
df = DataFrame(
{"A": [np.nan, 0, np.nan], "B": [0, 2, 5], "C": ["", "asdf", "fd"]}
)
filled = df.replace(np.nan, values)
expected = {k: v.replace(np.nan, values[k]) for k, v in df.items()}
tm.assert_frame_equal(filled, DataFrame(expected))
# list to list
to_rep = [np.nan, 0, ""]
values = [-2, -1, "missing"]
result = df.replace(to_rep, values)
expected = df.copy()
for i in range(len(to_rep)):
return_value = expected.replace(to_rep[i], values[i], inplace=True)
assert return_value is None
tm.assert_frame_equal(result, expected)
msg = r"Replacement lists must match in length\. Expecting 3 got 2"
with pytest.raises(ValueError, match=msg):
df.replace(to_rep, values[1:])
def test_replace_input_formats_scalar(self):
df = DataFrame(
{"A": [np.nan, 0, np.inf], "B": [0, 2, 5], "C": ["", "asdf", "fd"]}
)
# dict to scalar
to_rep = {"A": np.nan, "B": 0, "C": ""}
filled = df.replace(to_rep, 0)
expected = {k: v.replace(to_rep[k], 0) for k, v in df.items()}
tm.assert_frame_equal(filled, DataFrame(expected))
msg = "value argument must be scalar, dict, or Series"
with pytest.raises(TypeError, match=msg):
df.replace(to_rep, [np.nan, 0, ""])
# list to scalar
to_rep = [np.nan, 0, ""]
result = df.replace(to_rep, -1)
expected = df.copy()
for i in range(len(to_rep)):
return_value = expected.replace(to_rep[i], -1, inplace=True)
assert return_value is None
tm.assert_frame_equal(result, expected)
def test_replace_limit(self):
# TODO
pass
def test_replace_dict_no_regex(self):
answer = Series(
{
0: "Strongly Agree",
1: "Agree",
2: "Neutral",
3: "Disagree",
4: "Strongly Disagree",
}
)
weights = {
"Agree": 4,
"Disagree": 2,
"Neutral": 3,
"Strongly Agree": 5,
"Strongly Disagree": 1,
}
expected = Series({0: 5, 1: 4, 2: 3, 3: 2, 4: 1})
result = answer.replace(weights)
tm.assert_series_equal(result, expected)
def test_replace_series_no_regex(self):
answer = Series(
{
0: "Strongly Agree",
1: "Agree",
2: "Neutral",
3: "Disagree",
4: "Strongly Disagree",
}
)
weights = Series(
{
"Agree": 4,
"Disagree": 2,
"Neutral": 3,
"Strongly Agree": 5,
"Strongly Disagree": 1,
}
)
expected = Series({0: 5, 1: 4, 2: 3, 3: 2, 4: 1})
result = answer.replace(weights)
tm.assert_series_equal(result, expected)
def test_replace_dict_tuple_list_ordering_remains_the_same(self):
df = DataFrame({"A": [np.nan, 1]})
res1 = df.replace(to_replace={np.nan: 0, 1: -1e8})
res2 = df.replace(to_replace=(1, np.nan), value=[-1e8, 0])
res3 = df.replace(to_replace=[1, np.nan], value=[-1e8, 0])
expected = DataFrame({"A": [0, -1e8]})
tm.assert_frame_equal(res1, res2)
tm.assert_frame_equal(res2, res3)
tm.assert_frame_equal(res3, expected)
def test_replace_doesnt_replace_without_regex(self):
df = DataFrame(
{
"fol": [1, 2, 2, 3],
"T_opp": ["0", "vr", "0", "0"],
"T_Dir": ["0", "0", "0", "bt"],
"T_Enh": ["vo", "0", "0", "0"],
}
)
res = df.replace({r"\D": 1})
tm.assert_frame_equal(df, res)
def test_replace_bool_with_string(self):
df = DataFrame({"a": [True, False], "b": list("ab")})
result = df.replace(True, "a")
expected = DataFrame({"a": ["a", False], "b": df.b})
tm.assert_frame_equal(result, expected)
def test_replace_pure_bool_with_string_no_op(self):
df = DataFrame(np.random.rand(2, 2) > 0.5)
result = df.replace("asdf", "fdsa")
tm.assert_frame_equal(df, result)
def test_replace_bool_with_bool(self):
df = DataFrame(np.random.rand(2, 2) > 0.5)
result = df.replace(False, True)
expected = DataFrame(np.ones((2, 2), dtype=bool))
tm.assert_frame_equal(result, expected)
def test_replace_with_dict_with_bool_keys(self):
df = DataFrame({0: [True, False], 1: [False, True]})
result = df.replace({"asdf": "asdb", True: "yes"})
expected = DataFrame({0: ["yes", False], 1: [False, "yes"]})
tm.assert_frame_equal(result, expected)
def test_replace_dict_strings_vs_ints(self):
# GH#34789
df = DataFrame({"Y0": [1, 2], "Y1": [3, 4]})
result = df.replace({"replace_string": "test"})
tm.assert_frame_equal(result, df)
result = df["Y0"].replace({"replace_string": "test"})
tm.assert_series_equal(result, df["Y0"])
def test_replace_truthy(self):
df = DataFrame({"a": [True, True]})
r = df.replace([np.inf, -np.inf], np.nan)
e = df
tm.assert_frame_equal(r, e)
def test_nested_dict_overlapping_keys_replace_int(self):
# GH 27660 keep behaviour consistent for simple dictionary and
# nested dictionary replacement
df = DataFrame({"a": list(range(1, 5))})
result = df.replace({"a": dict(zip(range(1, 5), range(2, 6)))})
expected = df.replace(dict(zip(range(1, 5), range(2, 6))))
tm.assert_frame_equal(result, expected)
def test_nested_dict_overlapping_keys_replace_str(self):
# GH 27660
a = np.arange(1, 5)
astr = a.astype(str)
bstr = np.arange(2, 6).astype(str)
df = DataFrame({"a": astr})
result = df.replace(dict(zip(astr, bstr)))
expected = df.replace({"a": dict(zip(astr, bstr))})
tm.assert_frame_equal(result, expected)
def test_replace_swapping_bug(self):
df = DataFrame({"a": [True, False, True]})
res = df.replace({"a": {True: "Y", False: "N"}})
expect = DataFrame({"a": ["Y", "N", "Y"]})
tm.assert_frame_equal(res, expect)
df = DataFrame({"a": [0, 1, 0]})
res = df.replace({"a": {0: "Y", 1: "N"}})
expect = DataFrame({"a": ["Y", "N", "Y"]})
tm.assert_frame_equal(res, expect)
def test_replace_period(self):
d = {
"fname": {
"out_augmented_AUG_2011.json": pd.Period(year=2011, month=8, freq="M"),
"out_augmented_JAN_2011.json": pd.Period(year=2011, month=1, freq="M"),
"out_augmented_MAY_2012.json": pd.Period(year=2012, month=5, freq="M"),
"out_augmented_SUBSIDY_WEEK.json": pd.Period(
year=2011, month=4, freq="M"
),
"out_augmented_AUG_2012.json": pd.Period(year=2012, month=8, freq="M"),
"out_augmented_MAY_2011.json": pd.Period(year=2011, month=5, freq="M"),
"out_augmented_SEP_2013.json": pd.Period(year=2013, month=9, freq="M"),
}
}
df = DataFrame(
[
"out_augmented_AUG_2012.json",
"out_augmented_SEP_2013.json",
"out_augmented_SUBSIDY_WEEK.json",
"out_augmented_MAY_2012.json",
"out_augmented_MAY_2011.json",
"out_augmented_AUG_2011.json",
"out_augmented_JAN_2011.json",
],
columns=["fname"],
)
assert set(df.fname.values) == set(d["fname"].keys())
expected = DataFrame({"fname": [d["fname"][k] for k in df.fname.values]})
assert expected.dtypes[0] == "Period[M]"
result = df.replace(d)
tm.assert_frame_equal(result, expected)
def test_replace_datetime(self):
d = {
"fname": {
"out_augmented_AUG_2011.json": Timestamp("2011-08"),
"out_augmented_JAN_2011.json": Timestamp("2011-01"),
"out_augmented_MAY_2012.json": Timestamp("2012-05"),
"out_augmented_SUBSIDY_WEEK.json": Timestamp("2011-04"),
"out_augmented_AUG_2012.json": Timestamp("2012-08"),
"out_augmented_MAY_2011.json": Timestamp("2011-05"),
"out_augmented_SEP_2013.json": Timestamp("2013-09"),
}
}
df = DataFrame(
[
"out_augmented_AUG_2012.json",
"out_augmented_SEP_2013.json",
"out_augmented_SUBSIDY_WEEK.json",
"out_augmented_MAY_2012.json",
"out_augmented_MAY_2011.json",
"out_augmented_AUG_2011.json",
"out_augmented_JAN_2011.json",
],
columns=["fname"],
)
assert set(df.fname.values) == set(d["fname"].keys())
expected = DataFrame({"fname": [d["fname"][k] for k in df.fname.values]})
result = df.replace(d)
tm.assert_frame_equal(result, expected)
def test_replace_datetimetz(self):
# GH 11326
# behaving poorly when presented with a datetime64[ns, tz]
df = DataFrame(
{
"A": date_range("20130101", periods=3, tz="US/Eastern"),
"B": [0, np.nan, 2],
}
)
result = df.replace(np.nan, 1)
expected = DataFrame(
{
"A": date_range("20130101", periods=3, tz="US/Eastern"),
"B": Series([0, 1, 2], dtype="float64"),
}
)
tm.assert_frame_equal(result, expected)
result = df.fillna(1)
tm.assert_frame_equal(result, expected)
result = df.replace(0, np.nan)
expected = DataFrame(
{
"A": date_range("20130101", periods=3, tz="US/Eastern"),
"B": [np.nan, np.nan, 2],
}
)
tm.assert_frame_equal(result, expected)
result = df.replace(
Timestamp("20130102", tz="US/Eastern"),
Timestamp("20130104", tz="US/Eastern"),
)
expected = DataFrame(
{
"A": [
Timestamp("20130101", tz="US/Eastern"),
Timestamp("20130104", tz="US/Eastern"),
Timestamp("20130103", tz="US/Eastern"),
],
"B": [0, np.nan, 2],
}
)
tm.assert_frame_equal(result, expected)
result = df.copy()
result.iloc[1, 0] = np.nan
result = result.replace({"A": pd.NaT}, Timestamp("20130104", tz="US/Eastern"))
tm.assert_frame_equal(result, expected)
# coerce to object
result = df.copy()
result.iloc[1, 0] = np.nan
with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"):
result = result.replace(
{"A": pd.NaT}, Timestamp("20130104", tz="US/Pacific")
)
expected = DataFrame(
{
"A": [
Timestamp("20130101", tz="US/Eastern"),
Timestamp("20130104", tz="US/Pacific"),
# once deprecation is enforced
# Timestamp("20130104", tz="US/Pacific").tz_convert("US/Eastern"),
Timestamp("20130103", tz="US/Eastern"),
],
"B": [0, np.nan, 2],
}
)
tm.assert_frame_equal(result, expected)
result = df.copy()
result.iloc[1, 0] = np.nan
result = result.replace({"A": np.nan}, Timestamp("20130104"))
expected = DataFrame(
{
"A": [
Timestamp("20130101", tz="US/Eastern"),
Timestamp("20130104"),
Timestamp("20130103", tz="US/Eastern"),
],
"B": [0, np.nan, 2],
}
)
tm.assert_frame_equal(result, expected)
def test_replace_with_empty_dictlike(self, mix_abc):
# GH 15289
df = DataFrame(mix_abc)
tm.assert_frame_equal(df, df.replace({}))
tm.assert_frame_equal(df, df.replace(Series([], dtype=object)))
tm.assert_frame_equal(df, df.replace({"b": {}}))
tm.assert_frame_equal(df, df.replace(Series({"b": {}})))
@pytest.mark.parametrize(
"to_replace, method, expected",
[
(0, "bfill", {"A": [1, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}),
(
np.nan,
"bfill",
{"A": [0, 1, 2], "B": [5.0, 7.0, 7.0], "C": ["a", "b", "c"]},
),
("d", "ffill", {"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}),
(
[0, 2],
"bfill",
{"A": [1, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]},
),
(
[1, 2],
"pad",
{"A": [0, 0, 0], "B": [5, np.nan, 7], "C": ["a", "b", "c"]},
),
(
(1, 2),
"bfill",
{"A": [0, 2, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]},
),
(
["b", "c"],
"ffill",
{"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "a", "a"]},
),
],
)
def test_replace_method(self, to_replace, method, expected):
# GH 19632
df = DataFrame({"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]})
result = df.replace(to_replace=to_replace, value=None, method=method)
expected = DataFrame(expected)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"replace_dict, final_data",
[({"a": 1, "b": 1}, [[3, 3], [2, 2]]), ({"a": 1, "b": 2}, [[3, 1], [2, 3]])],
)
def test_categorical_replace_with_dict(self, replace_dict, final_data):
# GH 26988
df = DataFrame([[1, 1], [2, 2]], columns=["a", "b"], dtype="category")
final_data = np.array(final_data)
a = pd.Categorical(final_data[:, 0], categories=[3, 2])
ex_cat = [3, 2] if replace_dict["b"] == 1 else [1, 3]
b = pd.Categorical(final_data[:, 1], categories=ex_cat)
expected = DataFrame({"a": a, "b": b})
result = df.replace(replace_dict, 3)
tm.assert_frame_equal(result, expected)
msg = (
r"Attributes of DataFrame.iloc\[:, 0\] \(column name=\"a\"\) are "
"different"
)
with pytest.raises(AssertionError, match=msg):
# ensure non-inplace call does not affect original
tm.assert_frame_equal(df, expected)
return_value = df.replace(replace_dict, 3, inplace=True)
assert return_value is None
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize(
"df, to_replace, exp",
[
(
{"col1": [1, 2, 3], "col2": [4, 5, 6]},
{4: 5, 5: 6, 6: 7},
{"col1": [1, 2, 3], "col2": [5, 6, 7]},
),
(
{"col1": [1, 2, 3], "col2": ["4", "5", "6"]},
{"4": "5", "5": "6", "6": "7"},
{"col1": [1, 2, 3], "col2": ["5", "6", "7"]},
),
],
)
def test_replace_commutative(self, df, to_replace, exp):
# GH 16051
# DataFrame.replace() overwrites when values are non-numeric
# also added to data frame whilst issue was for series
df = DataFrame(df)
expected = DataFrame(exp)
result = df.replace(to_replace)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"replacer",
[
Timestamp("20170827"),
np.int8(1),
np.int16(1),
np.float32(1),
np.float64(1),
],
)
def test_replace_replacer_dtype(self, request, replacer):
# GH26632
df = DataFrame(["a"])
result = df.replace({"a": replacer, "b": replacer})
expected = DataFrame([replacer])
tm.assert_frame_equal(result, expected)
def test_replace_after_convert_dtypes(self):
# GH31517
df = DataFrame({"grp": [1, 2, 3, 4, 5]}, dtype="Int64")
result = df.replace(1, 10)
expected = DataFrame({"grp": [10, 2, 3, 4, 5]}, dtype="Int64")
tm.assert_frame_equal(result, expected)
def test_replace_invalid_to_replace(self):
# GH 18634
# API: replace() should raise an exception if invalid argument is given
df = DataFrame({"one": ["a", "b ", "c"], "two": ["d ", "e ", "f "]})
msg = (
r"Expecting 'to_replace' to be either a scalar, array-like, "
r"dict or None, got invalid type.*"
)
with pytest.raises(TypeError, match=msg):
df.replace(lambda x: x.strip())
@pytest.mark.parametrize("dtype", ["float", "float64", "int64", "Int64", "boolean"])
@pytest.mark.parametrize("value", [np.nan, pd.NA])
def test_replace_no_replacement_dtypes(self, dtype, value):
# https://github.com/pandas-dev/pandas/issues/32988
df = DataFrame(np.eye(2), dtype=dtype)
result = df.replace(to_replace=[None, -np.inf, np.inf], value=value)
tm.assert_frame_equal(result, df)
@pytest.mark.parametrize("replacement", [np.nan, 5])
def test_replace_with_duplicate_columns(self, replacement):
# GH 24798
result = DataFrame({"A": [1, 2, 3], "A1": [4, 5, 6], "B": [7, 8, 9]})
result.columns = list("AAB")
expected = DataFrame(
{"A": [1, 2, 3], "A1": [4, 5, 6], "B": [replacement, 8, 9]}
)
expected.columns = list("AAB")
result["B"] = result["B"].replace(7, replacement)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("value", [pd.Period("2020-01"), pd.Interval(0, 5)])
def test_replace_ea_ignore_float(self, frame_or_series, value):
# GH#34871
obj = DataFrame({"Per": [value] * 3})
obj = tm.get_obj(obj, frame_or_series)
expected = obj.copy()
result = obj.replace(1.0, 0.0)
tm.assert_equal(expected, result)
def test_replace_value_category_type(self):
"""
Test for #23305: to ensure category dtypes are maintained
after replace with direct values
"""
# create input data
input_dict = {
"col1": [1, 2, 3, 4],
"col2": ["a", "b", "c", "d"],
"col3": [1.5, 2.5, 3.5, 4.5],
"col4": ["cat1", "cat2", "cat3", "cat4"],
"col5": ["obj1", "obj2", "obj3", "obj4"],
}
# explicitly cast columns as category and order them
input_df = DataFrame(data=input_dict).astype(
{"col2": "category", "col4": "category"}
)
input_df["col2"] = input_df["col2"].cat.reorder_categories(
["a", "b", "c", "d"], ordered=True
)
input_df["col4"] = input_df["col4"].cat.reorder_categories(
["cat1", "cat2", "cat3", "cat4"], ordered=True
)
# create expected dataframe
expected_dict = {
"col1": [1, 2, 3, 4],
"col2": ["a", "b", "c", "z"],
"col3": [1.5, 2.5, 3.5, 4.5],
"col4": ["cat1", "catX", "cat3", "cat4"],
"col5": ["obj9", "obj2", "obj3", "obj4"],
}
# explicitly cast columns as category and order them
expected = DataFrame(data=expected_dict).astype(
{"col2": "category", "col4": "category"}
)
expected["col2"] = expected["col2"].cat.reorder_categories(
["a", "b", "c", "z"], ordered=True
)
expected["col4"] = expected["col4"].cat.reorder_categories(
["cat1", "catX", "cat3", "cat4"], ordered=True
)
# replace values in input dataframe
input_df = input_df.replace("d", "z")
input_df = input_df.replace("obj1", "obj9")
result = input_df.replace("cat2", "catX")
tm.assert_frame_equal(result, expected)
def test_replace_dict_category_type(self):
"""
Test to ensure category dtypes are maintained
after replace with dict values
"""
# GH#35268, GH#44940
# create input dataframe
input_dict = {"col1": ["a"], "col2": ["obj1"], "col3": ["cat1"]}
# explicitly cast columns as category
input_df = DataFrame(data=input_dict).astype(
{"col1": "category", "col2": "category", "col3": "category"}
)
# create expected dataframe
expected_dict = {"col1": ["z"], "col2": ["obj9"], "col3": ["catX"]}
# explicitly cast columns as category
expected = DataFrame(data=expected_dict).astype(
{"col1": "category", "col2": "category", "col3": "category"}
)
# replace values in input dataframe using a dict
result = input_df.replace({"a": "z", "obj1": "obj9", "cat1": "catX"})
tm.assert_frame_equal(result, expected)
def test_replace_with_compiled_regex(self):
# https://github.com/pandas-dev/pandas/issues/35680
df = DataFrame(["a", "b", "c"])
regex = re.compile("^a$")
result = df.replace({regex: "z"}, regex=True)
expected = DataFrame(["z", "b", "c"])
tm.assert_frame_equal(result, expected)
def test_replace_intervals(self):
# https://github.com/pandas-dev/pandas/issues/35931
df = DataFrame({"a": [pd.Interval(0, 1), pd.Interval(0, 1)]})
result = df.replace({"a": {pd.Interval(0, 1): "x"}})
expected = DataFrame({"a": ["x", "x"]})
tm.assert_frame_equal(result, expected)
def test_replace_unicode(self):
# GH: 16784
columns_values_map = {"positive": {"正面": 1, "中立": 1, "负面": 0}}
df1 = DataFrame({"positive": np.ones(3)})
result = df1.replace(columns_values_map)
expected = DataFrame({"positive": np.ones(3)})
tm.assert_frame_equal(result, expected)
def test_replace_bytes(self, frame_or_series):
# GH#38900
obj = frame_or_series(["o"]).astype("|S")
expected = obj.copy()
obj = obj.replace({None: np.nan})
tm.assert_equal(obj, expected)
@pytest.mark.parametrize(
"data, to_replace, value, expected",
[
([1], [1.0], [0], [0]),
([1], [1], [0], [0]),
([1.0], [1.0], [0], [0.0]),
([1.0], [1], [0], [0.0]),
],
)
@pytest.mark.parametrize("box", [list, tuple, np.array])
def test_replace_list_with_mixed_type(
self, data, to_replace, value, expected, box, frame_or_series
):
# GH#40371
obj = frame_or_series(data)
expected = frame_or_series(expected)
result = obj.replace(box(to_replace), value)
tm.assert_equal(result, expected)
@pytest.mark.parametrize("val", [2, np.nan, 2.0])
def test_replace_value_none_dtype_numeric(self, val):
# GH#48231
df = DataFrame({"a": [1, val]})
result = df.replace(val, None)
expected = DataFrame({"a": [1, None]}, dtype=object)
tm.assert_frame_equal(result, expected)
df = DataFrame({"a": [1, val]})
result = df.replace({val: None})
tm.assert_frame_equal(result, expected)
class TestDataFrameReplaceRegex:
@pytest.mark.parametrize(
"data",
[
{"a": list("ab.."), "b": list("efgh")},
{"a": list("ab.."), "b": list(range(4))},
],
)
@pytest.mark.parametrize(
"to_replace,value", [(r"\s*\.\s*", np.nan), (r"\s*(\.)\s*", r"\1\1\1")]
)
@pytest.mark.parametrize("compile_regex", [True, False])
@pytest.mark.parametrize("regex_kwarg", [True, False])
@pytest.mark.parametrize("inplace", [True, False])
def test_regex_replace_scalar(
self, data, to_replace, value, compile_regex, regex_kwarg, inplace
):
df = DataFrame(data)
expected = df.copy()
if compile_regex:
to_replace = re.compile(to_replace)
if regex_kwarg:
regex = to_replace
to_replace = None
else:
regex = True
result = df.replace(to_replace, value, inplace=inplace, regex=regex)
if inplace:
assert result is None
result = df
if value is np.nan:
expected_replace_val = np.nan
else:
expected_replace_val = "..."
expected.loc[expected["a"] == ".", "a"] = expected_replace_val
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("regex", [False, True])
def test_replace_regex_dtype_frame(self, regex):
# GH-48644
df1 = DataFrame({"A": ["0"], "B": ["0"]})
expected_df1 = DataFrame({"A": [1], "B": [1]})
result_df1 = df1.replace(to_replace="0", value=1, regex=regex)
tm.assert_frame_equal(result_df1, expected_df1)
df2 = DataFrame({"A": ["0"], "B": ["1"]})
expected_df2 = DataFrame({"A": [1], "B": ["1"]})
result_df2 = df2.replace(to_replace="0", value=1, regex=regex)
tm.assert_frame_equal(result_df2, expected_df2)
def test_replace_with_value_also_being_replaced(self):
# GH46306
df = DataFrame({"A": [0, 1, 2], "B": [1, 0, 2]})
result = df.replace({0: 1, 1: np.nan})
expected = DataFrame({"A": [1, np.nan, 2], "B": [np.nan, 1, 2]})
tm.assert_frame_equal(result, expected)
def test_replace_categorical_no_replacement(self):
# GH#46672
df = DataFrame(
{
"a": ["one", "two", None, "three"],
"b": ["one", None, "two", "three"],
},
dtype="category",
)
expected = df.copy()
result = df.replace(to_replace=[".", "def"], value=["_", None])
tm.assert_frame_equal(result, expected)