ai-content-maker/.venv/Lib/site-packages/pandas/tests/indexes/datetimes/test_datetime.py

169 lines
5.6 KiB
Python

from datetime import date
import dateutil
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
Timestamp,
date_range,
offsets,
)
import pandas._testing as tm
class TestDatetimeIndex:
def test_time_overflow_for_32bit_machines(self):
# GH8943. On some machines NumPy defaults to np.int32 (for example,
# 32-bit Linux machines). In the function _generate_regular_range
# found in tseries/index.py, `periods` gets multiplied by `strides`
# (which has value 1e9) and since the max value for np.int32 is ~2e9,
# and since those machines won't promote np.int32 to np.int64, we get
# overflow.
periods = np.int_(1000)
idx1 = date_range(start="2000", periods=periods, freq="S")
assert len(idx1) == periods
idx2 = date_range(end="2000", periods=periods, freq="S")
assert len(idx2) == periods
def test_nat(self):
assert DatetimeIndex([np.nan])[0] is pd.NaT
def test_week_of_month_frequency(self):
# GH 5348: "ValueError: Could not evaluate WOM-1SUN" shouldn't raise
d1 = date(2002, 9, 1)
d2 = date(2013, 10, 27)
d3 = date(2012, 9, 30)
idx1 = DatetimeIndex([d1, d2])
idx2 = DatetimeIndex([d3])
result_append = idx1.append(idx2)
expected = DatetimeIndex([d1, d2, d3])
tm.assert_index_equal(result_append, expected)
result_union = idx1.union(idx2)
expected = DatetimeIndex([d1, d3, d2])
tm.assert_index_equal(result_union, expected)
# GH 5115
result = date_range("2013-1-1", periods=4, freq="WOM-1SAT")
dates = ["2013-01-05", "2013-02-02", "2013-03-02", "2013-04-06"]
expected = DatetimeIndex(dates, freq="WOM-1SAT")
tm.assert_index_equal(result, expected)
def test_append_nondatetimeindex(self):
rng = date_range("1/1/2000", periods=10)
idx = Index(["a", "b", "c", "d"])
result = rng.append(idx)
assert isinstance(result[0], Timestamp)
def test_iteration_preserves_tz(self):
# see gh-8890
index = date_range("2012-01-01", periods=3, freq="H", tz="US/Eastern")
for i, ts in enumerate(index):
result = ts
expected = index[i]
assert result == expected
index = date_range(
"2012-01-01", periods=3, freq="H", tz=dateutil.tz.tzoffset(None, -28800)
)
for i, ts in enumerate(index):
result = ts
expected = index[i]
assert result._repr_base == expected._repr_base
assert result == expected
# 9100
index = DatetimeIndex(
["2014-12-01 03:32:39.987000-08:00", "2014-12-01 04:12:34.987000-08:00"]
)
for i, ts in enumerate(index):
result = ts
expected = index[i]
assert result._repr_base == expected._repr_base
assert result == expected
@pytest.mark.parametrize("periods", [0, 9999, 10000, 10001])
def test_iteration_over_chunksize(self, periods):
# GH21012
index = date_range("2000-01-01 00:00:00", periods=periods, freq="min")
num = 0
for stamp in index:
assert index[num] == stamp
num += 1
assert num == len(index)
def test_misc_coverage(self):
rng = date_range("1/1/2000", periods=5)
result = rng.groupby(rng.day)
assert isinstance(list(result.values())[0][0], Timestamp)
def test_groupby_function_tuple_1677(self):
df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100))
monthly_group = df.groupby(lambda x: (x.year, x.month))
result = monthly_group.mean()
assert isinstance(result.index[0], tuple)
def assert_index_parameters(self, index):
assert index.freq == "40960N"
assert index.inferred_freq == "40960N"
def test_ns_index(self):
nsamples = 400
ns = int(1e9 / 24414)
dtstart = np.datetime64("2012-09-20T00:00:00")
dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, "ns")
freq = ns * offsets.Nano()
index = DatetimeIndex(dt, freq=freq, name="time")
self.assert_index_parameters(index)
new_index = date_range(start=index[0], end=index[-1], freq=index.freq)
self.assert_index_parameters(new_index)
def test_asarray_tz_naive(self):
# This shouldn't produce a warning.
idx = date_range("2000", periods=2)
# M8[ns] by default
result = np.asarray(idx)
expected = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
# optionally, object
result = np.asarray(idx, dtype=object)
expected = np.array([Timestamp("2000-01-01"), Timestamp("2000-01-02")])
tm.assert_numpy_array_equal(result, expected)
def test_asarray_tz_aware(self):
tz = "US/Central"
idx = date_range("2000", periods=2, tz=tz)
expected = np.array(["2000-01-01T06", "2000-01-02T06"], dtype="M8[ns]")
result = np.asarray(idx, dtype="datetime64[ns]")
tm.assert_numpy_array_equal(result, expected)
# Old behavior with no warning
result = np.asarray(idx, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
# Future behavior with no warning
expected = np.array(
[Timestamp("2000-01-01", tz=tz), Timestamp("2000-01-02", tz=tz)]
)
result = np.asarray(idx, dtype=object)
tm.assert_numpy_array_equal(result, expected)