ai-content-maker/.venv/Lib/site-packages/pandas/tests/indexes/multi/test_drop.py

194 lines
5.9 KiB
Python

import warnings
import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas as pd
from pandas import (
Index,
MultiIndex,
)
import pandas._testing as tm
def test_drop(idx):
dropped = idx.drop([("foo", "two"), ("qux", "one")])
index = MultiIndex.from_tuples([("foo", "two"), ("qux", "one")])
dropped2 = idx.drop(index)
expected = idx[[0, 2, 3, 5]]
tm.assert_index_equal(dropped, expected)
tm.assert_index_equal(dropped2, expected)
dropped = idx.drop(["bar"])
expected = idx[[0, 1, 3, 4, 5]]
tm.assert_index_equal(dropped, expected)
dropped = idx.drop("foo")
expected = idx[[2, 3, 4, 5]]
tm.assert_index_equal(dropped, expected)
index = MultiIndex.from_tuples([("bar", "two")])
with pytest.raises(KeyError, match=r"^10$"):
idx.drop([("bar", "two")])
with pytest.raises(KeyError, match=r"^10$"):
idx.drop(index)
with pytest.raises(KeyError, match=r"^'two'$"):
idx.drop(["foo", "two"])
# partially correct argument
mixed_index = MultiIndex.from_tuples([("qux", "one"), ("bar", "two")])
with pytest.raises(KeyError, match=r"^10$"):
idx.drop(mixed_index)
# error='ignore'
dropped = idx.drop(index, errors="ignore")
expected = idx[[0, 1, 2, 3, 4, 5]]
tm.assert_index_equal(dropped, expected)
dropped = idx.drop(mixed_index, errors="ignore")
expected = idx[[0, 1, 2, 3, 5]]
tm.assert_index_equal(dropped, expected)
dropped = idx.drop(["foo", "two"], errors="ignore")
expected = idx[[2, 3, 4, 5]]
tm.assert_index_equal(dropped, expected)
# mixed partial / full drop
dropped = idx.drop(["foo", ("qux", "one")])
expected = idx[[2, 3, 5]]
tm.assert_index_equal(dropped, expected)
# mixed partial / full drop / error='ignore'
mixed_index = ["foo", ("qux", "one"), "two"]
with pytest.raises(KeyError, match=r"^'two'$"):
idx.drop(mixed_index)
dropped = idx.drop(mixed_index, errors="ignore")
expected = idx[[2, 3, 5]]
tm.assert_index_equal(dropped, expected)
def test_droplevel_with_names(idx):
index = idx[idx.get_loc("foo")]
dropped = index.droplevel(0)
assert dropped.name == "second"
index = MultiIndex(
levels=[Index(range(4)), Index(range(4)), Index(range(4))],
codes=[
np.array([0, 0, 1, 2, 2, 2, 3, 3]),
np.array([0, 1, 0, 0, 0, 1, 0, 1]),
np.array([1, 0, 1, 1, 0, 0, 1, 0]),
],
names=["one", "two", "three"],
)
dropped = index.droplevel(0)
assert dropped.names == ("two", "three")
dropped = index.droplevel("two")
expected = index.droplevel(1)
assert dropped.equals(expected)
def test_droplevel_list():
index = MultiIndex(
levels=[Index(range(4)), Index(range(4)), Index(range(4))],
codes=[
np.array([0, 0, 1, 2, 2, 2, 3, 3]),
np.array([0, 1, 0, 0, 0, 1, 0, 1]),
np.array([1, 0, 1, 1, 0, 0, 1, 0]),
],
names=["one", "two", "three"],
)
dropped = index[:2].droplevel(["three", "one"])
expected = index[:2].droplevel(2).droplevel(0)
assert dropped.equals(expected)
dropped = index[:2].droplevel([])
expected = index[:2]
assert dropped.equals(expected)
msg = (
"Cannot remove 3 levels from an index with 3 levels: "
"at least one level must be left"
)
with pytest.raises(ValueError, match=msg):
index[:2].droplevel(["one", "two", "three"])
with pytest.raises(KeyError, match="'Level four not found'"):
index[:2].droplevel(["one", "four"])
def test_drop_not_lexsorted():
# GH 12078
# define the lexsorted version of the multi-index
tuples = [("a", ""), ("b1", "c1"), ("b2", "c2")]
lexsorted_mi = MultiIndex.from_tuples(tuples, names=["b", "c"])
assert lexsorted_mi._is_lexsorted()
# and the not-lexsorted version
df = pd.DataFrame(
columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]]
)
df = df.pivot_table(index="a", columns=["b", "c"], values="d")
df = df.reset_index()
not_lexsorted_mi = df.columns
assert not not_lexsorted_mi._is_lexsorted()
# compare the results
tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi)
with tm.assert_produces_warning(PerformanceWarning):
tm.assert_index_equal(lexsorted_mi.drop("a"), not_lexsorted_mi.drop("a"))
def test_drop_with_nan_in_index(nulls_fixture):
# GH#18853
mi = MultiIndex.from_tuples([("blah", nulls_fixture)], names=["name", "date"])
msg = r"labels \[Timestamp\('2001-01-01 00:00:00'\)\] not found in level"
with pytest.raises(KeyError, match=msg):
mi.drop(pd.Timestamp("2001"), level="date")
def test_drop_with_non_monotonic_duplicates():
# GH#33494
mi = MultiIndex.from_tuples([(1, 2), (2, 3), (1, 2)])
with warnings.catch_warnings():
warnings.simplefilter("ignore", PerformanceWarning)
result = mi.drop((1, 2))
expected = MultiIndex.from_tuples([(2, 3)])
tm.assert_index_equal(result, expected)
def test_single_level_drop_partially_missing_elements():
# GH 37820
mi = MultiIndex.from_tuples([(1, 2), (2, 2), (3, 2)])
msg = r"labels \[4\] not found in level"
with pytest.raises(KeyError, match=msg):
mi.drop(4, level=0)
with pytest.raises(KeyError, match=msg):
mi.drop([1, 4], level=0)
msg = r"labels \[nan\] not found in level"
with pytest.raises(KeyError, match=msg):
mi.drop([np.nan], level=0)
with pytest.raises(KeyError, match=msg):
mi.drop([np.nan, 1, 2, 3], level=0)
mi = MultiIndex.from_tuples([(np.nan, 1), (1, 2)])
msg = r"labels \['a'\] not found in level"
with pytest.raises(KeyError, match=msg):
mi.drop([np.nan, 1, "a"], level=0)
def test_droplevel_multiindex_one_level():
# GH#37208
index = MultiIndex.from_tuples([(2,)], names=("b",))
result = index.droplevel([])
expected = Index([2], name="b")
tm.assert_index_equal(result, expected)