963 lines
31 KiB
Python
963 lines
31 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.errors import (
|
|
IndexingError,
|
|
PerformanceWarning,
|
|
)
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.fixture
|
|
def single_level_multiindex():
|
|
"""single level MultiIndex"""
|
|
return MultiIndex(
|
|
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def frame_random_data_integer_multi_index():
|
|
levels = [[0, 1], [0, 1, 2]]
|
|
codes = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
|
|
index = MultiIndex(levels=levels, codes=codes)
|
|
return DataFrame(np.random.randn(6, 2), index=index)
|
|
|
|
|
|
class TestMultiIndexLoc:
|
|
def test_loc_setitem_frame_with_multiindex(self, multiindex_dataframe_random_data):
|
|
frame = multiindex_dataframe_random_data
|
|
frame.loc[("bar", "two"), "B"] = 5
|
|
assert frame.loc[("bar", "two"), "B"] == 5
|
|
|
|
# with integer labels
|
|
df = frame.copy()
|
|
df.columns = list(range(3))
|
|
df.loc[("bar", "two"), 1] = 7
|
|
assert df.loc[("bar", "two"), 1] == 7
|
|
|
|
def test_loc_getitem_general(self):
|
|
|
|
# GH#2817
|
|
data = {
|
|
"amount": {0: 700, 1: 600, 2: 222, 3: 333, 4: 444},
|
|
"col": {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0},
|
|
"year": {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012},
|
|
}
|
|
df = DataFrame(data).set_index(keys=["col", "year"])
|
|
key = 4.0, 2012
|
|
|
|
# emits a PerformanceWarning, ok
|
|
with tm.assert_produces_warning(PerformanceWarning):
|
|
tm.assert_frame_equal(df.loc[key], df.iloc[2:])
|
|
|
|
# this is ok
|
|
return_value = df.sort_index(inplace=True)
|
|
assert return_value is None
|
|
res = df.loc[key]
|
|
|
|
# col has float dtype, result should be Float64Index
|
|
index = MultiIndex.from_arrays([[4.0] * 3, [2012] * 3], names=["col", "year"])
|
|
expected = DataFrame({"amount": [222, 333, 444]}, index=index)
|
|
tm.assert_frame_equal(res, expected)
|
|
|
|
def test_loc_getitem_multiindex_missing_label_raises(self):
|
|
# GH#21593
|
|
df = DataFrame(
|
|
np.random.randn(3, 3),
|
|
columns=[[2, 2, 4], [6, 8, 10]],
|
|
index=[[4, 4, 8], [8, 10, 12]],
|
|
)
|
|
|
|
with pytest.raises(KeyError, match=r"^2$"):
|
|
df.loc[2]
|
|
|
|
def test_loc_getitem_list_of_tuples_with_multiindex(
|
|
self, multiindex_year_month_day_dataframe_random_data
|
|
):
|
|
ser = multiindex_year_month_day_dataframe_random_data["A"]
|
|
expected = ser.reindex(ser.index[49:51])
|
|
result = ser.loc[[(2000, 3, 10), (2000, 3, 13)]]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_loc_getitem_series(self):
|
|
# GH14730
|
|
# passing a series as a key with a MultiIndex
|
|
index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
|
|
x = Series(index=index, data=range(9), dtype=np.float64)
|
|
y = Series([1, 3])
|
|
expected = Series(
|
|
data=[0, 1, 2, 6, 7, 8],
|
|
index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
|
|
dtype=np.float64,
|
|
)
|
|
result = x.loc[y]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = x.loc[[1, 3]]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# GH15424
|
|
y1 = Series([1, 3], index=[1, 2])
|
|
result = x.loc[y1]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
empty = Series(data=[], dtype=np.float64)
|
|
expected = Series(
|
|
[],
|
|
index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
|
|
dtype=np.float64,
|
|
)
|
|
result = x.loc[empty]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_loc_getitem_array(self):
|
|
# GH15434
|
|
# passing an array as a key with a MultiIndex
|
|
index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
|
|
x = Series(index=index, data=range(9), dtype=np.float64)
|
|
y = np.array([1, 3])
|
|
expected = Series(
|
|
data=[0, 1, 2, 6, 7, 8],
|
|
index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
|
|
dtype=np.float64,
|
|
)
|
|
result = x.loc[y]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# empty array:
|
|
empty = np.array([])
|
|
expected = Series(
|
|
[],
|
|
index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
|
|
dtype="float64",
|
|
)
|
|
result = x.loc[empty]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# 0-dim array (scalar):
|
|
scalar = np.int64(1)
|
|
expected = Series(data=[0, 1, 2], index=["A", "B", "C"], dtype=np.float64)
|
|
result = x.loc[scalar]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_loc_multiindex_labels(self):
|
|
df = DataFrame(
|
|
np.random.randn(3, 3),
|
|
columns=[["i", "i", "j"], ["A", "A", "B"]],
|
|
index=[["i", "i", "j"], ["X", "X", "Y"]],
|
|
)
|
|
|
|
# the first 2 rows
|
|
expected = df.iloc[[0, 1]].droplevel(0)
|
|
result = df.loc["i"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# 2nd (last) column
|
|
expected = df.iloc[:, [2]].droplevel(0, axis=1)
|
|
result = df.loc[:, "j"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# bottom right corner
|
|
expected = df.iloc[[2], [2]].droplevel(0).droplevel(0, axis=1)
|
|
result = df.loc["j"].loc[:, "j"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# with a tuple
|
|
expected = df.iloc[[0, 1]]
|
|
result = df.loc[("i", "X")]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_loc_multiindex_ints(self):
|
|
df = DataFrame(
|
|
np.random.randn(3, 3),
|
|
columns=[[2, 2, 4], [6, 8, 10]],
|
|
index=[[4, 4, 8], [8, 10, 12]],
|
|
)
|
|
expected = df.iloc[[0, 1]].droplevel(0)
|
|
result = df.loc[4]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_loc_multiindex_missing_label_raises(self):
|
|
df = DataFrame(
|
|
np.random.randn(3, 3),
|
|
columns=[[2, 2, 4], [6, 8, 10]],
|
|
index=[[4, 4, 8], [8, 10, 12]],
|
|
)
|
|
|
|
with pytest.raises(KeyError, match=r"^2$"):
|
|
df.loc[2]
|
|
|
|
@pytest.mark.parametrize("key, pos", [([2, 4], [0, 1]), ([2], []), ([2, 3], [])])
|
|
def test_loc_multiindex_list_missing_label(self, key, pos):
|
|
# GH 27148 - lists with missing labels _do_ raise
|
|
df = DataFrame(
|
|
np.random.randn(3, 3),
|
|
columns=[[2, 2, 4], [6, 8, 10]],
|
|
index=[[4, 4, 8], [8, 10, 12]],
|
|
)
|
|
|
|
with pytest.raises(KeyError, match="not in index"):
|
|
df.loc[key]
|
|
|
|
def test_loc_multiindex_too_many_dims_raises(self):
|
|
# GH 14885
|
|
s = Series(
|
|
range(8),
|
|
index=MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]),
|
|
)
|
|
|
|
with pytest.raises(KeyError, match=r"^\('a', 'b'\)$"):
|
|
s.loc["a", "b"]
|
|
with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"):
|
|
s.loc["a", "d", "g"]
|
|
with pytest.raises(IndexingError, match="Too many indexers"):
|
|
s.loc["a", "d", "g", "j"]
|
|
|
|
def test_loc_multiindex_indexer_none(self):
|
|
|
|
# GH6788
|
|
# multi-index indexer is None (meaning take all)
|
|
attributes = ["Attribute" + str(i) for i in range(1)]
|
|
attribute_values = ["Value" + str(i) for i in range(5)]
|
|
|
|
index = MultiIndex.from_product([attributes, attribute_values])
|
|
df = 0.1 * np.random.randn(10, 1 * 5) + 0.5
|
|
df = DataFrame(df, columns=index)
|
|
result = df[attributes]
|
|
tm.assert_frame_equal(result, df)
|
|
|
|
# GH 7349
|
|
# loc with a multi-index seems to be doing fallback
|
|
df = DataFrame(
|
|
np.arange(12).reshape(-1, 1),
|
|
index=MultiIndex.from_product([[1, 2, 3, 4], [1, 2, 3]]),
|
|
)
|
|
|
|
expected = df.loc[([1, 2],), :]
|
|
result = df.loc[[1, 2]]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_loc_multiindex_incomplete(self):
|
|
|
|
# GH 7399
|
|
# incomplete indexers
|
|
s = Series(
|
|
np.arange(15, dtype="int64"),
|
|
MultiIndex.from_product([range(5), ["a", "b", "c"]]),
|
|
)
|
|
expected = s.loc[:, "a":"c"]
|
|
|
|
result = s.loc[0:4, "a":"c"]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.loc[:4, "a":"c"]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.loc[0:, "a":"c"]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# GH 7400
|
|
# multiindexer getitem with list of indexers skips wrong element
|
|
s = Series(
|
|
np.arange(15, dtype="int64"),
|
|
MultiIndex.from_product([range(5), ["a", "b", "c"]]),
|
|
)
|
|
expected = s.iloc[[6, 7, 8, 12, 13, 14]]
|
|
result = s.loc[2:4:2, "a":"c"]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_get_loc_single_level(self, single_level_multiindex):
|
|
single_level = single_level_multiindex
|
|
s = Series(np.random.randn(len(single_level)), index=single_level)
|
|
for k in single_level.values:
|
|
s[k]
|
|
|
|
def test_loc_getitem_int_slice(self):
|
|
# GH 3053
|
|
# loc should treat integer slices like label slices
|
|
|
|
index = MultiIndex.from_product([[6, 7, 8], ["a", "b"]])
|
|
df = DataFrame(np.random.randn(6, 6), index, index)
|
|
result = df.loc[6:8, :]
|
|
expected = df
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
index = MultiIndex.from_product([[10, 20, 30], ["a", "b"]])
|
|
df = DataFrame(np.random.randn(6, 6), index, index)
|
|
result = df.loc[20:30, :]
|
|
expected = df.iloc[2:]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# doc examples
|
|
result = df.loc[10, :]
|
|
expected = df.iloc[0:2]
|
|
expected.index = ["a", "b"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc[:, 10]
|
|
expected = df[10]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"indexer_type_1", (list, tuple, set, slice, np.ndarray, Series, Index)
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"indexer_type_2", (list, tuple, set, slice, np.ndarray, Series, Index)
|
|
)
|
|
def test_loc_getitem_nested_indexer(self, indexer_type_1, indexer_type_2):
|
|
# GH #19686
|
|
# .loc should work with nested indexers which can be
|
|
# any list-like objects (see `is_list_like` (`pandas.api.types`)) or slices
|
|
|
|
def convert_nested_indexer(indexer_type, keys):
|
|
if indexer_type == np.ndarray:
|
|
return np.array(keys)
|
|
if indexer_type == slice:
|
|
return slice(*keys)
|
|
return indexer_type(keys)
|
|
|
|
a = [10, 20, 30]
|
|
b = [1, 2, 3]
|
|
index = MultiIndex.from_product([a, b])
|
|
df = DataFrame(
|
|
np.arange(len(index), dtype="int64"), index=index, columns=["Data"]
|
|
)
|
|
|
|
keys = ([10, 20], [2, 3])
|
|
types = (indexer_type_1, indexer_type_2)
|
|
|
|
# check indexers with all the combinations of nested objects
|
|
# of all the valid types
|
|
indexer = tuple(
|
|
convert_nested_indexer(indexer_type, k)
|
|
for indexer_type, k in zip(types, keys)
|
|
)
|
|
if indexer_type_1 is set or indexer_type_2 is set:
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
result = df.loc[indexer, "Data"]
|
|
else:
|
|
result = df.loc[indexer, "Data"]
|
|
expected = Series(
|
|
[1, 2, 4, 5], name="Data", index=MultiIndex.from_product(keys)
|
|
)
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_multiindex_loc_one_dimensional_tuple(self, frame_or_series):
|
|
# GH#37711
|
|
mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
|
|
obj = frame_or_series([1, 2], index=mi)
|
|
obj.loc[("a",)] = 0
|
|
expected = frame_or_series([0, 2], index=mi)
|
|
tm.assert_equal(obj, expected)
|
|
|
|
@pytest.mark.parametrize("indexer", [("a",), ("a")])
|
|
def test_multiindex_one_dimensional_tuple_columns(self, indexer):
|
|
# GH#37711
|
|
mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
|
|
obj = DataFrame([1, 2], index=mi)
|
|
obj.loc[indexer, :] = 0
|
|
expected = DataFrame([0, 2], index=mi)
|
|
tm.assert_frame_equal(obj, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"indexer, exp_value", [(slice(None), 1.0), ((1, 2), np.nan)]
|
|
)
|
|
def test_multiindex_setitem_columns_enlarging(self, indexer, exp_value):
|
|
# GH#39147
|
|
mi = MultiIndex.from_tuples([(1, 2), (3, 4)])
|
|
df = DataFrame([[1, 2], [3, 4]], index=mi, columns=["a", "b"])
|
|
df.loc[indexer, ["c", "d"]] = 1.0
|
|
expected = DataFrame(
|
|
[[1, 2, 1.0, 1.0], [3, 4, exp_value, exp_value]],
|
|
index=mi,
|
|
columns=["a", "b", "c", "d"],
|
|
)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_sorted_multiindex_after_union(self):
|
|
# GH#44752
|
|
midx = MultiIndex.from_product(
|
|
[pd.date_range("20110101", periods=2), Index(["a", "b"])]
|
|
)
|
|
ser1 = Series(1, index=midx)
|
|
ser2 = Series(1, index=midx[:2])
|
|
df = pd.concat([ser1, ser2], axis=1)
|
|
expected = df.copy()
|
|
result = df.loc["2011-01-01":"2011-01-02"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
df = DataFrame({0: ser1, 1: ser2})
|
|
result = df.loc["2011-01-01":"2011-01-02"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
df = pd.concat([ser1, ser2.reindex(ser1.index)], axis=1)
|
|
result = df.loc["2011-01-01":"2011-01-02"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_loc_no_second_level_index(self):
|
|
# GH#43599
|
|
df = DataFrame(
|
|
index=MultiIndex.from_product([list("ab"), list("cd"), list("e")]),
|
|
columns=["Val"],
|
|
)
|
|
res = df.loc[np.s_[:, "c", :]]
|
|
expected = DataFrame(
|
|
index=MultiIndex.from_product([list("ab"), list("e")]), columns=["Val"]
|
|
)
|
|
tm.assert_frame_equal(res, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"indexer, pos",
|
|
[
|
|
([], []), # empty ok
|
|
(["A"], slice(3)),
|
|
(["A", "D"], []), # "D" isn't present -> raise
|
|
(["D", "E"], []), # no values found -> raise
|
|
(["D"], []), # same, with single item list: GH 27148
|
|
(pd.IndexSlice[:, ["foo"]], slice(2, None, 3)),
|
|
(pd.IndexSlice[:, ["foo", "bah"]], slice(2, None, 3)),
|
|
],
|
|
)
|
|
def test_loc_getitem_duplicates_multiindex_missing_indexers(indexer, pos):
|
|
# GH 7866
|
|
# multi-index slicing with missing indexers
|
|
idx = MultiIndex.from_product(
|
|
[["A", "B", "C"], ["foo", "bar", "baz"]], names=["one", "two"]
|
|
)
|
|
ser = Series(np.arange(9, dtype="int64"), index=idx).sort_index()
|
|
expected = ser.iloc[pos]
|
|
|
|
if expected.size == 0 and indexer != []:
|
|
with pytest.raises(KeyError, match=str(indexer)):
|
|
ser.loc[indexer]
|
|
else:
|
|
warn = None
|
|
msg = "MultiIndex with a nested sequence"
|
|
if indexer == (slice(None), ["foo", "bah"]):
|
|
# "bah" is not in idx.levels[1], so is ignored, will raise KeyError
|
|
warn = FutureWarning
|
|
|
|
with tm.assert_produces_warning(warn, match=msg):
|
|
result = ser.loc[indexer]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("columns_indexer", [([], slice(None)), (["foo"], [])])
|
|
def test_loc_getitem_duplicates_multiindex_empty_indexer(columns_indexer):
|
|
# GH 8737
|
|
# empty indexer
|
|
multi_index = MultiIndex.from_product((["foo", "bar", "baz"], ["alpha", "beta"]))
|
|
df = DataFrame(np.random.randn(5, 6), index=range(5), columns=multi_index)
|
|
df = df.sort_index(level=0, axis=1)
|
|
|
|
expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0])
|
|
result = df.loc[:, columns_indexer]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_loc_getitem_duplicates_multiindex_non_scalar_type_object():
|
|
# regression from < 0.14.0
|
|
# GH 7914
|
|
df = DataFrame(
|
|
[[np.mean, np.median], ["mean", "median"]],
|
|
columns=MultiIndex.from_tuples([("functs", "mean"), ("functs", "median")]),
|
|
index=["function", "name"],
|
|
)
|
|
result = df.loc["function", ("functs", "mean")]
|
|
expected = np.mean
|
|
assert result == expected
|
|
|
|
|
|
def test_loc_getitem_tuple_plus_slice():
|
|
# GH 671
|
|
df = DataFrame(
|
|
{
|
|
"a": np.arange(10),
|
|
"b": np.arange(10),
|
|
"c": np.random.randn(10),
|
|
"d": np.random.randn(10),
|
|
}
|
|
).set_index(["a", "b"])
|
|
expected = df.loc[0, 0]
|
|
result = df.loc[(0, 0), :]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_loc_getitem_int(frame_random_data_integer_multi_index):
|
|
df = frame_random_data_integer_multi_index
|
|
result = df.loc[1]
|
|
expected = df[-3:]
|
|
expected.index = expected.index.droplevel(0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_loc_getitem_int_raises_exception(frame_random_data_integer_multi_index):
|
|
df = frame_random_data_integer_multi_index
|
|
with pytest.raises(KeyError, match=r"^3$"):
|
|
df.loc[3]
|
|
|
|
|
|
def test_loc_getitem_lowerdim_corner(multiindex_dataframe_random_data):
|
|
df = multiindex_dataframe_random_data
|
|
|
|
# test setup - check key not in dataframe
|
|
with pytest.raises(KeyError, match=r"^\('bar', 'three'\)$"):
|
|
df.loc[("bar", "three"), "B"]
|
|
|
|
# in theory should be inserting in a sorted space????
|
|
df.loc[("bar", "three"), "B"] = 0
|
|
expected = 0
|
|
result = df.sort_index().loc[("bar", "three"), "B"]
|
|
assert result == expected
|
|
|
|
|
|
def test_loc_setitem_single_column_slice():
|
|
# case from https://github.com/pandas-dev/pandas/issues/27841
|
|
df = DataFrame(
|
|
"string",
|
|
index=list("abcd"),
|
|
columns=MultiIndex.from_product([["Main"], ("another", "one")]),
|
|
)
|
|
df["labels"] = "a"
|
|
df.loc[:, "labels"] = df.index
|
|
tm.assert_numpy_array_equal(np.asarray(df["labels"]), np.asarray(df.index))
|
|
|
|
# test with non-object block
|
|
df = DataFrame(
|
|
np.nan,
|
|
index=range(4),
|
|
columns=MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")]),
|
|
)
|
|
expected = df.copy()
|
|
msg = "will attempt to set the values inplace instead"
|
|
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
|
df.loc[:, "B"] = np.arange(4)
|
|
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
|
expected.iloc[:, 2] = np.arange(4)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
|
|
def test_loc_nan_multiindex():
|
|
# GH 5286
|
|
tups = [
|
|
("Good Things", "C", np.nan),
|
|
("Good Things", "R", np.nan),
|
|
("Bad Things", "C", np.nan),
|
|
("Bad Things", "T", np.nan),
|
|
("Okay Things", "N", "B"),
|
|
("Okay Things", "N", "D"),
|
|
("Okay Things", "B", np.nan),
|
|
("Okay Things", "D", np.nan),
|
|
]
|
|
df = DataFrame(
|
|
np.ones((8, 4)),
|
|
columns=Index(["d1", "d2", "d3", "d4"]),
|
|
index=MultiIndex.from_tuples(tups, names=["u1", "u2", "u3"]),
|
|
)
|
|
result = df.loc["Good Things"].loc["C"]
|
|
expected = DataFrame(
|
|
np.ones((1, 4)),
|
|
index=Index([np.nan], dtype="object", name="u3"),
|
|
columns=Index(["d1", "d2", "d3", "d4"], dtype="object"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_loc_period_string_indexing():
|
|
# GH 9892
|
|
a = pd.period_range("2013Q1", "2013Q4", freq="Q")
|
|
i = (1111, 2222, 3333)
|
|
idx = MultiIndex.from_product((a, i), names=("Period", "CVR"))
|
|
df = DataFrame(
|
|
index=idx,
|
|
columns=(
|
|
"OMS",
|
|
"OMK",
|
|
"RES",
|
|
"DRIFT_IND",
|
|
"OEVRIG_IND",
|
|
"FIN_IND",
|
|
"VARE_UD",
|
|
"LOEN_UD",
|
|
"FIN_UD",
|
|
),
|
|
)
|
|
result = df.loc[("2013Q1", 1111), "OMS"]
|
|
|
|
alt = df.loc[(a[0], 1111), "OMS"]
|
|
assert np.isnan(alt)
|
|
|
|
# Because the resolution of the string matches, it is an exact lookup,
|
|
# not a slice
|
|
assert np.isnan(result)
|
|
|
|
# TODO: should it figure this out?
|
|
# alt = df.loc["2013Q1", 1111, "OMS"]
|
|
# assert np.isnan(alt)
|
|
|
|
|
|
def test_loc_datetime_mask_slicing():
|
|
# GH 16699
|
|
dt_idx = pd.to_datetime(["2017-05-04", "2017-05-05"])
|
|
m_idx = MultiIndex.from_product([dt_idx, dt_idx], names=["Idx1", "Idx2"])
|
|
df = DataFrame(
|
|
data=[[1, 2], [3, 4], [5, 6], [7, 6]], index=m_idx, columns=["C1", "C2"]
|
|
)
|
|
result = df.loc[(dt_idx[0], (df.index.get_level_values(1) > "2017-05-04")), "C1"]
|
|
expected = Series(
|
|
[3],
|
|
name="C1",
|
|
index=MultiIndex.from_tuples(
|
|
[(pd.Timestamp("2017-05-04"), pd.Timestamp("2017-05-05"))],
|
|
names=["Idx1", "Idx2"],
|
|
),
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_loc_datetime_series_tuple_slicing():
|
|
# https://github.com/pandas-dev/pandas/issues/35858
|
|
date = pd.Timestamp("2000")
|
|
ser = Series(
|
|
1,
|
|
index=MultiIndex.from_tuples([("a", date)], names=["a", "b"]),
|
|
name="c",
|
|
)
|
|
result = ser.loc[:, [date]]
|
|
tm.assert_series_equal(result, ser)
|
|
|
|
|
|
def test_loc_with_mi_indexer():
|
|
# https://github.com/pandas-dev/pandas/issues/35351
|
|
df = DataFrame(
|
|
data=[["a", 1], ["a", 0], ["b", 1], ["c", 2]],
|
|
index=MultiIndex.from_tuples(
|
|
[(0, 1), (1, 0), (1, 1), (1, 1)], names=["index", "date"]
|
|
),
|
|
columns=["author", "price"],
|
|
)
|
|
idx = MultiIndex.from_tuples([(0, 1), (1, 1)], names=["index", "date"])
|
|
result = df.loc[idx, :]
|
|
expected = DataFrame(
|
|
[["a", 1], ["b", 1], ["c", 2]],
|
|
index=MultiIndex.from_tuples([(0, 1), (1, 1), (1, 1)], names=["index", "date"]),
|
|
columns=["author", "price"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_loc_mi_with_level1_named_0():
|
|
# GH#37194
|
|
dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
|
|
|
|
ser = Series(range(3), index=dti)
|
|
df = ser.to_frame()
|
|
df[1] = dti
|
|
|
|
df2 = df.set_index(0, append=True)
|
|
assert df2.index.names == (None, 0)
|
|
df2.index.get_loc(dti[0]) # smoke test
|
|
|
|
result = df2.loc[dti[0]]
|
|
expected = df2.iloc[[0]].droplevel(None)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
ser2 = df2[1]
|
|
assert ser2.index.names == (None, 0)
|
|
|
|
result = ser2.loc[dti[0]]
|
|
expected = ser2.iloc[[0]].droplevel(None)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_getitem_str_slice(datapath):
|
|
# GH#15928
|
|
path = datapath("reshape", "merge", "data", "quotes2.csv")
|
|
df = pd.read_csv(path, parse_dates=["time"])
|
|
df2 = df.set_index(["ticker", "time"]).sort_index()
|
|
|
|
res = df2.loc[("AAPL", slice("2016-05-25 13:30:00")), :].droplevel(0)
|
|
expected = df2.loc["AAPL"].loc[slice("2016-05-25 13:30:00"), :]
|
|
tm.assert_frame_equal(res, expected)
|
|
|
|
|
|
def test_3levels_leading_period_index():
|
|
# GH#24091
|
|
pi = pd.PeriodIndex(
|
|
["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"],
|
|
name="datetime",
|
|
freq="B",
|
|
)
|
|
lev2 = ["A", "A", "Z", "W"]
|
|
lev3 = ["B", "C", "Q", "F"]
|
|
mi = MultiIndex.from_arrays([pi, lev2, lev3])
|
|
|
|
ser = Series(range(4), index=mi, dtype=np.float64)
|
|
result = ser.loc[(pi[0], "A", "B")]
|
|
assert result == 0.0
|
|
|
|
|
|
class TestKeyErrorsWithMultiIndex:
|
|
def test_missing_keys_raises_keyerror(self):
|
|
# GH#27420 KeyError, not TypeError
|
|
df = DataFrame(np.arange(12).reshape(4, 3), columns=["A", "B", "C"])
|
|
df2 = df.set_index(["A", "B"])
|
|
|
|
with pytest.raises(KeyError, match="1"):
|
|
df2.loc[(1, 6)]
|
|
|
|
def test_missing_key_raises_keyerror2(self):
|
|
# GH#21168 KeyError, not "IndexingError: Too many indexers"
|
|
ser = Series(-1, index=MultiIndex.from_product([[0, 1]] * 2))
|
|
|
|
with pytest.raises(KeyError, match=r"\(0, 3\)"):
|
|
ser.loc[0, 3]
|
|
|
|
def test_missing_key_combination(self):
|
|
# GH: 19556
|
|
mi = MultiIndex.from_arrays(
|
|
[
|
|
np.array(["a", "a", "b", "b"]),
|
|
np.array(["1", "2", "2", "3"]),
|
|
np.array(["c", "d", "c", "d"]),
|
|
],
|
|
names=["one", "two", "three"],
|
|
)
|
|
df = DataFrame(np.random.rand(4, 3), index=mi)
|
|
msg = r"\('b', '1', slice\(None, None, None\)\)"
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.loc[("b", "1", slice(None)), :]
|
|
with pytest.raises(KeyError, match=msg):
|
|
df.index.get_locs(("b", "1", slice(None)))
|
|
with pytest.raises(KeyError, match=r"\('b', '1'\)"):
|
|
df.loc[("b", "1"), :]
|
|
|
|
|
|
def test_getitem_loc_commutability(multiindex_year_month_day_dataframe_random_data):
|
|
df = multiindex_year_month_day_dataframe_random_data
|
|
ser = df["A"]
|
|
result = ser[2000, 5]
|
|
expected = df.loc[2000, 5]["A"]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_loc_with_nan():
|
|
# GH: 27104
|
|
df = DataFrame(
|
|
{"col": [1, 2, 5], "ind1": ["a", "d", np.nan], "ind2": [1, 4, 5]}
|
|
).set_index(["ind1", "ind2"])
|
|
result = df.loc[["a"]]
|
|
expected = DataFrame(
|
|
{"col": [1]}, index=MultiIndex.from_tuples([("a", 1)], names=["ind1", "ind2"])
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc["a"]
|
|
expected = DataFrame({"col": [1]}, index=Index([1], name="ind2"))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_getitem_non_found_tuple():
|
|
# GH: 25236
|
|
df = DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"]).set_index(
|
|
["a", "b", "c"]
|
|
)
|
|
with pytest.raises(KeyError, match=r"\(2\.0, 2\.0, 3\.0\)"):
|
|
df.loc[(2.0, 2.0, 3.0)]
|
|
|
|
|
|
def test_get_loc_datetime_index():
|
|
# GH#24263
|
|
index = pd.date_range("2001-01-01", periods=100)
|
|
mi = MultiIndex.from_arrays([index])
|
|
# Check if get_loc matches for Index and MultiIndex
|
|
assert mi.get_loc("2001-01") == slice(0, 31, None)
|
|
assert index.get_loc("2001-01") == slice(0, 31, None)
|
|
|
|
loc = mi[::2].get_loc("2001-01")
|
|
expected = index[::2].get_loc("2001-01")
|
|
assert loc == expected
|
|
|
|
loc = mi.repeat(2).get_loc("2001-01")
|
|
expected = index.repeat(2).get_loc("2001-01")
|
|
assert loc == expected
|
|
|
|
loc = mi.append(mi).get_loc("2001-01")
|
|
expected = index.append(index).get_loc("2001-01")
|
|
# TODO: standardize return type for MultiIndex.get_loc
|
|
tm.assert_numpy_array_equal(loc.nonzero()[0], expected)
|
|
|
|
|
|
def test_loc_setitem_indexer_differently_ordered():
|
|
# GH#34603
|
|
mi = MultiIndex.from_product([["a", "b"], [0, 1]])
|
|
df = DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=mi)
|
|
|
|
indexer = ("a", [1, 0])
|
|
df.loc[indexer, :] = np.array([[9, 10], [11, 12]])
|
|
expected = DataFrame([[11, 12], [9, 10], [5, 6], [7, 8]], index=mi)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
|
|
def test_loc_getitem_index_differently_ordered_slice_none():
|
|
# GH#31330
|
|
df = DataFrame(
|
|
[[1, 2], [3, 4], [5, 6], [7, 8]],
|
|
index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
|
|
columns=["a", "b"],
|
|
)
|
|
result = df.loc[(slice(None), [2, 1]), :]
|
|
expected = DataFrame(
|
|
[[3, 4], [7, 8], [1, 2], [5, 6]],
|
|
index=[["a", "b", "a", "b"], [2, 2, 1, 1]],
|
|
columns=["a", "b"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("indexer", [[1, 2, 7, 6, 2, 3, 8, 7], [1, 2, 7, 6, 3, 8]])
|
|
def test_loc_getitem_index_differently_ordered_slice_none_duplicates(indexer):
|
|
# GH#40978
|
|
df = DataFrame(
|
|
[1] * 8,
|
|
index=MultiIndex.from_tuples(
|
|
[(1, 1), (1, 2), (1, 7), (1, 6), (2, 2), (2, 3), (2, 8), (2, 7)]
|
|
),
|
|
columns=["a"],
|
|
)
|
|
result = df.loc[(slice(None), indexer), :]
|
|
expected = DataFrame(
|
|
[1] * 8,
|
|
index=[[1, 1, 2, 1, 2, 1, 2, 2], [1, 2, 2, 7, 7, 6, 3, 8]],
|
|
columns=["a"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc[df.index.isin(indexer, level=1), :]
|
|
tm.assert_frame_equal(result, df)
|
|
|
|
|
|
def test_loc_getitem_drops_levels_for_one_row_dataframe():
|
|
# GH#10521 "x" and "z" are both scalar indexing, so those levels are dropped
|
|
mi = MultiIndex.from_arrays([["x"], ["y"], ["z"]], names=["a", "b", "c"])
|
|
df = DataFrame({"d": [0]}, index=mi)
|
|
expected = df.droplevel([0, 2])
|
|
result = df.loc["x", :, "z"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
ser = Series([0], index=mi)
|
|
result = ser.loc["x", :, "z"]
|
|
expected = Series([0], index=Index(["y"], name="b"))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_mi_columns_loc_list_label_order():
|
|
# GH 10710
|
|
cols = MultiIndex.from_product([["A", "B", "C"], [1, 2]])
|
|
df = DataFrame(np.zeros((5, 6)), columns=cols)
|
|
result = df.loc[:, ["B", "A"]]
|
|
expected = DataFrame(
|
|
np.zeros((5, 4)),
|
|
columns=MultiIndex.from_tuples([("B", 1), ("B", 2), ("A", 1), ("A", 2)]),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_mi_partial_indexing_list_raises():
|
|
# GH 13501
|
|
frame = DataFrame(
|
|
np.arange(12).reshape((4, 3)),
|
|
index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
|
|
columns=[["Ohio", "Ohio", "Colorado"], ["Green", "Red", "Green"]],
|
|
)
|
|
frame.index.names = ["key1", "key2"]
|
|
frame.columns.names = ["state", "color"]
|
|
with pytest.raises(KeyError, match="\\[2\\] not in index"):
|
|
frame.loc[["b", 2], "Colorado"]
|
|
|
|
|
|
def test_mi_indexing_list_nonexistent_raises():
|
|
# GH 15452
|
|
s = Series(range(4), index=MultiIndex.from_product([[1, 2], ["a", "b"]]))
|
|
with pytest.raises(KeyError, match="\\['not' 'found'\\] not in index"):
|
|
s.loc[["not", "found"]]
|
|
|
|
|
|
def test_mi_add_cell_missing_row_non_unique():
|
|
# GH 16018
|
|
result = DataFrame(
|
|
[[1, 2, 5, 6], [3, 4, 7, 8]],
|
|
index=["a", "a"],
|
|
columns=MultiIndex.from_product([[1, 2], ["A", "B"]]),
|
|
)
|
|
result.loc["c"] = -1
|
|
result.loc["c", (1, "A")] = 3
|
|
result.loc["d", (1, "A")] = 3
|
|
expected = DataFrame(
|
|
[
|
|
[1.0, 2.0, 5.0, 6.0],
|
|
[3.0, 4.0, 7.0, 8.0],
|
|
[3.0, -1.0, -1, -1],
|
|
[3.0, np.nan, np.nan, np.nan],
|
|
],
|
|
index=["a", "a", "c", "d"],
|
|
columns=MultiIndex.from_product([[1, 2], ["A", "B"]]),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_loc_get_scalar_casting_to_float():
|
|
# GH#41369
|
|
df = DataFrame(
|
|
{"a": 1.0, "b": 2}, index=MultiIndex.from_arrays([[3], [4]], names=["c", "d"])
|
|
)
|
|
result = df.loc[(3, 4), "b"]
|
|
assert result == 2
|
|
assert isinstance(result, np.int64)
|
|
result = df.loc[[(3, 4)], "b"].iloc[0]
|
|
assert result == 2
|
|
assert isinstance(result, np.int64)
|
|
|
|
|
|
def test_loc_empty_single_selector_with_names():
|
|
# GH 19517
|
|
idx = MultiIndex.from_product([["a", "b"], ["A", "B"]], names=[1, 0])
|
|
s2 = Series(index=idx, dtype=np.float64)
|
|
result = s2.loc["a"]
|
|
expected = Series([np.nan, np.nan], index=Index(["A", "B"], name=0))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_loc_keyerror_rightmost_key_missing():
|
|
# GH 20951
|
|
|
|
df = DataFrame(
|
|
{
|
|
"A": [100, 100, 200, 200, 300, 300],
|
|
"B": [10, 10, 20, 21, 31, 33],
|
|
"C": range(6),
|
|
}
|
|
)
|
|
df = df.set_index(["A", "B"])
|
|
with pytest.raises(KeyError, match="^1$"):
|
|
df.loc[(100, 1)]
|
|
|
|
|
|
def test_multindex_series_loc_with_tuple_label():
|
|
# GH#43908
|
|
mi = MultiIndex.from_tuples([(1, 2), (3, (4, 5))])
|
|
ser = Series([1, 2], index=mi)
|
|
result = ser.loc[(3, (4, 5))]
|
|
assert result == 2
|