ai-content-maker/.venv/Lib/site-packages/pandas/tests/plotting/test_hist_method.py

778 lines
28 KiB
Python

""" Test cases for .hist method """
import re
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
Series,
to_datetime,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
TestPlotBase,
_check_plot_works,
)
try:
from pandas.plotting._matplotlib.compat import mpl_ge_3_6_0
except ImportError:
mpl_ge_3_6_0 = lambda: True
@pytest.fixture
def ts():
return tm.makeTimeSeries(name="ts")
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def test_hist_legacy(self, ts):
_check_plot_works(ts.hist)
_check_plot_works(ts.hist, grid=False)
_check_plot_works(ts.hist, figsize=(8, 10))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(ts.hist, by=ts.index.month)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(ts.hist, by=ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(ts.hist, ax=ax, default_axes=True)
_check_plot_works(ts.hist, ax=ax, figure=fig, default_axes=True)
_check_plot_works(ts.hist, figure=fig, default_axes=True)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(ts.hist, figure=fig, ax=ax1, default_axes=True)
_check_plot_works(ts.hist, figure=fig, ax=ax2, default_axes=True)
msg = (
"Cannot pass 'figure' when using the 'by' argument, since a new 'Figure' "
"instance will be created"
)
with pytest.raises(ValueError, match=msg):
ts.hist(by=ts.index, figure=fig)
def test_hist_bins_legacy(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.hist(bins=2)[0][0]
assert len(ax.patches) == 2
def test_hist_layout(self, hist_df):
df = hist_df
msg = "The 'layout' keyword is not supported when 'by' is None"
with pytest.raises(ValueError, match=msg):
df.height.hist(layout=(1, 1))
with pytest.raises(ValueError, match=msg):
df.height.hist(layout=[1, 1])
@pytest.mark.slow
def test_hist_layout_with_by(self, hist_df):
df = hist_df
# _check_plot_works adds an `ax` kwarg to the method call
# so we get a warning about an axis being cleared, even
# though we don't explicing pass one, see GH #13188
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1))
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1))
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1))
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4))
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2))
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
def test_hist_no_overlap(self):
from matplotlib.pyplot import (
gcf,
subplot,
)
x = Series(np.random.randn(2))
y = Series(np.random.randn(2))
subplot(121)
x.hist()
subplot(122)
y.hist()
fig = gcf()
axes = fig.axes
assert len(axes) == 2
def test_hist_by_no_extra_plots(self, hist_df):
df = hist_df
axes = df.height.hist(by=df.gender) # noqa
assert len(self.plt.get_fignums()) == 1
def test_plot_fails_when_ax_differs_from_figure(self, ts):
from pylab import figure
fig1 = figure()
fig2 = figure()
ax1 = fig1.add_subplot(111)
msg = "passed axis not bound to passed figure"
with pytest.raises(AssertionError, match=msg):
ts.hist(ax=ax1, figure=fig2)
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
ser = Series(np.random.randint(1, 10))
ax = ser.hist(histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)
@pytest.mark.parametrize(
"by, expected_axes_num, expected_layout", [(None, 1, (1, 1)), ("b", 2, (1, 2))]
)
def test_hist_with_legend(self, by, expected_axes_num, expected_layout):
# GH 6279 - Series histogram can have a legend
index = 15 * ["1"] + 15 * ["2"]
s = Series(np.random.randn(30), index=index, name="a")
s.index.name = "b"
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(s.hist, default_axes=True, legend=True, by=by)
self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
self._check_legend_labels(axes, "a")
@pytest.mark.parametrize("by", [None, "b"])
def test_hist_with_legend_raises(self, by):
# GH 6279 - Series histogram with legend and label raises
index = 15 * ["1"] + 15 * ["2"]
s = Series(np.random.randn(30), index=index, name="a")
s.index.name = "b"
with pytest.raises(ValueError, match="Cannot use both legend and label"):
s.hist(legend=True, by=by, label="c")
def test_hist_kwargs(self, ts):
_, ax = self.plt.subplots()
ax = ts.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 5
self._check_text_labels(ax.yaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = ts.plot.hist(orientation="horizontal", ax=ax)
self._check_text_labels(ax.xaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = ts.plot.hist(align="left", stacked=True, ax=ax)
tm.close()
@pytest.mark.xfail(mpl_ge_3_6_0(), reason="Api changed")
@td.skip_if_no_scipy
def test_hist_kde(self, ts):
_, ax = self.plt.subplots()
ax = ts.plot.hist(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
_check_plot_works(ts.plot.kde)
_check_plot_works(ts.plot.density)
_, ax = self.plt.subplots()
ax = ts.plot.kde(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
@td.skip_if_no_scipy
def test_hist_kde_color(self, ts):
_, ax = self.plt.subplots()
ax = ts.plot.hist(logy=True, bins=10, color="b", ax=ax)
self._check_ax_scales(ax, yaxis="log")
assert len(ax.patches) == 10
self._check_colors(ax.patches, facecolors=["b"] * 10)
_, ax = self.plt.subplots()
ax = ts.plot.kde(logy=True, color="r", ax=ax)
self._check_ax_scales(ax, yaxis="log")
lines = ax.get_lines()
assert len(lines) == 1
self._check_colors(lines, ["r"])
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
@pytest.mark.slow
def test_hist_df_legacy(self, hist_df):
from matplotlib.patches import Rectangle
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(hist_df.hist)
# make sure layout is handled
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, grid=False)
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
assert not axes[1, 1].get_visible()
_check_plot_works(df[[2]].hist)
df = DataFrame(np.random.randn(100, 1))
_check_plot_works(df.hist)
# make sure layout is handled
df = DataFrame(np.random.randn(100, 5))
df[5] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, layout=(4, 2))
self._check_axes_shape(axes, axes_num=6, layout=(4, 2))
# make sure sharex, sharey is handled
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.hist, sharex=True, sharey=True)
# handle figsize arg
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.hist, figsize=(8, 10))
# check bins argument
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.hist, bins=5)
# make sure xlabelsize and xrot are handled
ser = df[0]
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
tm.close()
ax = ser.hist(cumulative=True, bins=4, density=True)
# height of last bin (index 5) must be 1.0
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
tm.assert_almost_equal(rects[-1].get_height(), 1.0)
tm.close()
ax = ser.hist(log=True)
# scale of y must be 'log'
self._check_ax_scales(ax, yaxis="log")
tm.close()
# propagate attr exception from matplotlib.Axes.hist
with tm.external_error_raised(AttributeError):
ser.hist(foo="bar")
def test_hist_non_numerical_or_datetime_raises(self):
# gh-10444, GH32590
df = DataFrame(
{
"a": np.random.rand(10),
"b": np.random.randint(0, 10, 10),
"c": to_datetime(
np.random.randint(
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
)
),
"d": to_datetime(
np.random.randint(
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
),
utc=True,
),
}
)
df_o = df.astype(object)
msg = "hist method requires numerical or datetime columns, nothing to plot."
with pytest.raises(ValueError, match=msg):
df_o.hist()
def test_hist_layout(self):
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
layout_to_expected_size = (
{"layout": None, "expected_size": (2, 2)}, # default is 2x2
{"layout": (2, 2), "expected_size": (2, 2)},
{"layout": (4, 1), "expected_size": (4, 1)},
{"layout": (1, 4), "expected_size": (1, 4)},
{"layout": (3, 3), "expected_size": (3, 3)},
{"layout": (-1, 4), "expected_size": (1, 4)},
{"layout": (4, -1), "expected_size": (4, 1)},
{"layout": (-1, 2), "expected_size": (2, 2)},
{"layout": (2, -1), "expected_size": (2, 2)},
)
for layout_test in layout_to_expected_size:
axes = df.hist(layout=layout_test["layout"])
expected = layout_test["expected_size"]
self._check_axes_shape(axes, axes_num=3, layout=expected)
# layout too small for all 4 plots
msg = "Layout of 1x1 must be larger than required size 3"
with pytest.raises(ValueError, match=msg):
df.hist(layout=(1, 1))
# invalid format for layout
msg = re.escape("Layout must be a tuple of (rows, columns)")
with pytest.raises(ValueError, match=msg):
df.hist(layout=(1,))
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.hist(layout=(-1, -1))
# GH 9351
def test_tight_layout(self):
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
# Use default_axes=True when plotting method generate subplots itself
_check_plot_works(df.hist, default_axes=True)
self.plt.tight_layout()
tm.close()
def test_hist_subplot_xrot(self):
# GH 30288
df = DataFrame(
{
"length": [1.5, 0.5, 1.2, 0.9, 3],
"animal": ["pig", "rabbit", "pig", "pig", "rabbit"],
}
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
filterwarnings="always",
column="length",
by="animal",
bins=5,
xrot=0,
)
self._check_ticks_props(axes, xrot=0)
@pytest.mark.parametrize(
"column, expected",
[
(None, ["width", "length", "height"]),
(["length", "width", "height"], ["length", "width", "height"]),
],
)
def test_hist_column_order_unchanged(self, column, expected):
# GH29235
df = DataFrame(
{
"width": [0.7, 0.2, 0.15, 0.2, 1.1],
"length": [1.5, 0.5, 1.2, 0.9, 3],
"height": [3, 0.5, 3.4, 2, 1],
},
index=["pig", "rabbit", "duck", "chicken", "horse"],
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
column=column,
layout=(1, 3),
)
result = [axes[0, i].get_title() for i in range(3)]
assert result == expected
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"])
ax = df.hist(histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)
@pytest.mark.parametrize("by", [None, "c"])
@pytest.mark.parametrize("column", [None, "b"])
def test_hist_with_legend(self, by, column):
# GH 6279 - DataFrame histogram can have a legend
expected_axes_num = 1 if by is None and column is not None else 2
expected_layout = (1, expected_axes_num)
expected_labels = column or ["a", "b"]
if by is not None:
expected_labels = [expected_labels] * 2
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
legend=True,
by=by,
column=column,
)
self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
if by is None and column is None:
axes = axes[0]
for expected_label, ax in zip(expected_labels, axes):
self._check_legend_labels(ax, expected_label)
@pytest.mark.parametrize("by", [None, "c"])
@pytest.mark.parametrize("column", [None, "b"])
def test_hist_with_legend_raises(self, by, column):
# GH 6279 - DataFrame histogram with legend and label raises
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
with pytest.raises(ValueError, match="Cannot use both legend and label"):
df.hist(legend=True, by=by, column=column, label="d")
def test_hist_df_kwargs(self):
df = DataFrame(np.random.randn(10, 2))
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 10
def test_hist_df_with_nonnumerics(self):
# GH 9853
with tm.RNGContext(1):
df = DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])
df["E"] = ["x", "y"] * 5
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 20
_, ax = self.plt.subplots()
ax = df.plot.hist(ax=ax) # bins=10
assert len(ax.patches) == 40
def test_hist_secondary_legend(self):
# GH 9610
df = DataFrame(np.random.randn(30, 4), columns=list("abcd"))
# primary -> secondary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are drawn on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=["a", "b (right)"])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are draw on left ax
# left axis must be invisible, right axis must be visible
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b (right)"])
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> primary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
# right axes is returned
df["b"].plot.hist(ax=ax, legend=True)
# both legends are draw on left ax
# left and right axis must be visible
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b"])
assert ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):
def test_grouped_hist_legacy(self):
from matplotlib.patches import Rectangle
from pandas.plotting._matplotlib.hist import _grouped_hist
df = DataFrame(np.random.randn(500, 1), columns=["A"])
df["B"] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=500,
dtype=np.int64,
)
)
df["C"] = np.random.randint(0, 4, 500)
df["D"] = ["X"] * 500
axes = _grouped_hist(df.A, by=df.C)
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
tm.close()
axes = df.hist(by=df.C)
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
tm.close()
# group by a key with single value
axes = df.hist(by="D", rot=30)
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
self._check_ticks_props(axes, xrot=30)
tm.close()
# make sure kwargs to hist are handled
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = _grouped_hist(
df.A,
by=df.C,
cumulative=True,
bins=4,
xlabelsize=xf,
xrot=xrot,
ylabelsize=yf,
yrot=yrot,
density=True,
)
# height of last bin (index 5) must be 1.0
for ax in axes.ravel():
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
height = rects[-1].get_height()
tm.assert_almost_equal(height, 1.0)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
tm.close()
axes = _grouped_hist(df.A, by=df.C, log=True)
# scale of y must be 'log'
self._check_ax_scales(axes, yaxis="log")
tm.close()
# propagate attr exception from matplotlib.Axes.hist
with tm.external_error_raised(AttributeError):
_grouped_hist(df.A, by=df.C, foo="bar")
msg = "Specify figure size by tuple instead"
with pytest.raises(ValueError, match=msg):
df.hist(by="C", figsize="default")
def test_grouped_hist_legacy2(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender_int = np.random.choice([0, 1], size=n)
df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int})
gb = df_int.groupby("gender")
axes = gb.hist()
assert len(axes) == 2
assert len(self.plt.get_fignums()) == 2
tm.close()
@pytest.mark.slow
def test_grouped_hist_layout(self, hist_df):
df = hist_df
msg = "Layout of 1x1 must be larger than required size 2"
with pytest.raises(ValueError, match=msg):
df.hist(column="weight", by=df.gender, layout=(1, 1))
msg = "Layout of 1x3 must be larger than required size 4"
with pytest.raises(ValueError, match=msg):
df.hist(column="height", by=df.category, layout=(1, 3))
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.hist(column="height", by=df.category, layout=(-1, -1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, 1)
)
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, -1)
)
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
axes = df.hist(column="height", by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
axes = df.hist(column="height", by=df.category, layout=(-1, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
axes = df.hist(column="height", by=df.category, layout=(4, 2), figsize=(12, 8))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 8))
tm.close()
# GH 6769
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
df.hist, column="height", by="classroom", layout=(2, 2)
)
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
# without column
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, by="classroom")
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.hist(by="gender", layout=(3, 5))
self._check_axes_shape(axes, axes_num=2, layout=(3, 5))
axes = df.hist(column=["height", "weight", "category"])
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
def test_grouped_hist_multiple_axes(self, hist_df):
# GH 6970, GH 7069
df = hist_df
fig, axes = self.plt.subplots(2, 3)
returned = df.hist(column=["height", "weight", "category"], ax=axes[0])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
returned = df.hist(by="classroom", ax=axes[1])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
fig, axes = self.plt.subplots(2, 3)
# pass different number of axes from required
msg = "The number of passed axes must be 1, the same as the output plot"
with pytest.raises(ValueError, match=msg):
axes = df.hist(column="height", ax=axes)
def test_axis_share_x(self, hist_df):
df = hist_df
# GH4089
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True)
# share x
assert self.get_x_axis(ax1).joined(ax1, ax2)
assert self.get_x_axis(ax2).joined(ax1, ax2)
# don't share y
assert not self.get_y_axis(ax1).joined(ax1, ax2)
assert not self.get_y_axis(ax2).joined(ax1, ax2)
def test_axis_share_y(self, hist_df):
df = hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True)
# share y
assert self.get_y_axis(ax1).joined(ax1, ax2)
assert self.get_y_axis(ax2).joined(ax1, ax2)
# don't share x
assert not self.get_x_axis(ax1).joined(ax1, ax2)
assert not self.get_x_axis(ax2).joined(ax1, ax2)
def test_axis_share_xy(self, hist_df):
df = hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True)
# share both x and y
assert self.get_x_axis(ax1).joined(ax1, ax2)
assert self.get_x_axis(ax2).joined(ax1, ax2)
assert self.get_y_axis(ax1).joined(ax1, ax2)
assert self.get_y_axis(ax2).joined(ax1, ax2)
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"])
ax = df.hist(by="a", histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)