ai-content-maker/.venv/Lib/site-packages/pandas/tests/series/test_unary.py

53 lines
1.6 KiB
Python

import pytest
from pandas import Series
import pandas._testing as tm
class TestSeriesUnaryOps:
# __neg__, __pos__, __invert__
def test_neg(self):
ser = tm.makeStringSeries()
ser.name = "series"
tm.assert_series_equal(-ser, -1 * ser)
def test_invert(self):
ser = tm.makeStringSeries()
ser.name = "series"
tm.assert_series_equal(-(ser < 0), ~(ser < 0))
@pytest.mark.parametrize(
"source, neg_target, abs_target",
[
([1, 2, 3], [-1, -2, -3], [1, 2, 3]),
([1, 2, None], [-1, -2, None], [1, 2, None]),
],
)
def test_all_numeric_unary_operators(
self, any_numeric_ea_dtype, source, neg_target, abs_target
):
# GH38794
dtype = any_numeric_ea_dtype
ser = Series(source, dtype=dtype)
neg_result, pos_result, abs_result = -ser, +ser, abs(ser)
if dtype.startswith("U"):
neg_target = -Series(source, dtype=dtype)
else:
neg_target = Series(neg_target, dtype=dtype)
abs_target = Series(abs_target, dtype=dtype)
tm.assert_series_equal(neg_result, neg_target)
tm.assert_series_equal(pos_result, ser)
tm.assert_series_equal(abs_result, abs_target)
@pytest.mark.parametrize("op", ["__neg__", "__abs__"])
def test_unary_float_op_mask(self, float_ea_dtype, op):
dtype = float_ea_dtype
ser = Series([1.1, 2.2, 3.3], dtype=dtype)
result = getattr(ser, op)()
target = result.copy(deep=True)
ser[0] = None
tm.assert_series_equal(result, target)