ai-content-maker/.venv/Lib/site-packages/sklearn/inspection/_plot/decision_boundary.py

407 lines
15 KiB
Python

import numpy as np
from ...base import is_regressor
from ...preprocessing import LabelEncoder
from ...utils import _safe_indexing, check_matplotlib_support
from ...utils._response import _get_response_values
from ...utils.validation import (
_is_arraylike_not_scalar,
_num_features,
check_is_fitted,
)
def _check_boundary_response_method(estimator, response_method, class_of_interest):
"""Validate the response methods to be used with the fitted estimator.
Parameters
----------
estimator : object
Fitted estimator to check.
response_method : {'auto', 'predict_proba', 'decision_function', 'predict'}
Specifies whether to use :term:`predict_proba`,
:term:`decision_function`, :term:`predict` as the target response.
If set to 'auto', the response method is tried in the following order:
:term:`decision_function`, :term:`predict_proba`, :term:`predict`.
class_of_interest : int, float, bool, str or None
The class considered when plotting the decision. If the label is specified, it
is then possible to plot the decision boundary in multiclass settings.
.. versionadded:: 1.4
Returns
-------
prediction_method : list of str or str
The name or list of names of the response methods to use.
"""
has_classes = hasattr(estimator, "classes_")
if has_classes and _is_arraylike_not_scalar(estimator.classes_[0]):
msg = "Multi-label and multi-output multi-class classifiers are not supported"
raise ValueError(msg)
if has_classes and len(estimator.classes_) > 2:
if response_method not in {"auto", "predict"} and class_of_interest is None:
msg = (
"Multiclass classifiers are only supported when `response_method` is "
"'predict' or 'auto'. Else you must provide `class_of_interest` to "
"plot the decision boundary of a specific class."
)
raise ValueError(msg)
prediction_method = "predict" if response_method == "auto" else response_method
elif response_method == "auto":
if is_regressor(estimator):
prediction_method = "predict"
else:
prediction_method = ["decision_function", "predict_proba", "predict"]
else:
prediction_method = response_method
return prediction_method
class DecisionBoundaryDisplay:
"""Decisions boundary visualization.
It is recommended to use
:func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
attributes.
Read more in the :ref:`User Guide <visualizations>`.
.. versionadded:: 1.1
Parameters
----------
xx0 : ndarray of shape (grid_resolution, grid_resolution)
First output of :func:`meshgrid <numpy.meshgrid>`.
xx1 : ndarray of shape (grid_resolution, grid_resolution)
Second output of :func:`meshgrid <numpy.meshgrid>`.
response : ndarray of shape (grid_resolution, grid_resolution)
Values of the response function.
xlabel : str, default=None
Default label to place on x axis.
ylabel : str, default=None
Default label to place on y axis.
Attributes
----------
surface_ : matplotlib `QuadContourSet` or `QuadMesh`
If `plot_method` is 'contour' or 'contourf', `surface_` is a
:class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
`plot_method` is 'pcolormesh', `surface_` is a
:class:`QuadMesh <matplotlib.collections.QuadMesh>`.
ax_ : matplotlib Axes
Axes with decision boundary.
figure_ : matplotlib Figure
Figure containing the decision boundary.
See Also
--------
DecisionBoundaryDisplay.from_estimator : Plot decision boundary given an estimator.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sklearn.datasets import load_iris
>>> from sklearn.inspection import DecisionBoundaryDisplay
>>> from sklearn.tree import DecisionTreeClassifier
>>> iris = load_iris()
>>> feature_1, feature_2 = np.meshgrid(
... np.linspace(iris.data[:, 0].min(), iris.data[:, 0].max()),
... np.linspace(iris.data[:, 1].min(), iris.data[:, 1].max())
... )
>>> grid = np.vstack([feature_1.ravel(), feature_2.ravel()]).T
>>> tree = DecisionTreeClassifier().fit(iris.data[:, :2], iris.target)
>>> y_pred = np.reshape(tree.predict(grid), feature_1.shape)
>>> display = DecisionBoundaryDisplay(
... xx0=feature_1, xx1=feature_2, response=y_pred
... )
>>> display.plot()
<...>
>>> display.ax_.scatter(
... iris.data[:, 0], iris.data[:, 1], c=iris.target, edgecolor="black"
... )
<...>
>>> plt.show()
"""
def __init__(self, *, xx0, xx1, response, xlabel=None, ylabel=None):
self.xx0 = xx0
self.xx1 = xx1
self.response = response
self.xlabel = xlabel
self.ylabel = ylabel
def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs):
"""Plot visualization.
Parameters
----------
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
Plotting method to call when plotting the response. Please refer
to the following matplotlib documentation for details:
:func:`contourf <matplotlib.pyplot.contourf>`,
:func:`contour <matplotlib.pyplot.contour>`,
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.
ax : Matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
xlabel : str, default=None
Overwrite the x-axis label.
ylabel : str, default=None
Overwrite the y-axis label.
**kwargs : dict
Additional keyword arguments to be passed to the `plot_method`.
Returns
-------
display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
Object that stores computed values.
"""
check_matplotlib_support("DecisionBoundaryDisplay.plot")
import matplotlib.pyplot as plt # noqa
if plot_method not in ("contourf", "contour", "pcolormesh"):
raise ValueError(
"plot_method must be 'contourf', 'contour', or 'pcolormesh'"
)
if ax is None:
_, ax = plt.subplots()
plot_func = getattr(ax, plot_method)
self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs)
if xlabel is not None or not ax.get_xlabel():
xlabel = self.xlabel if xlabel is None else xlabel
ax.set_xlabel(xlabel)
if ylabel is not None or not ax.get_ylabel():
ylabel = self.ylabel if ylabel is None else ylabel
ax.set_ylabel(ylabel)
self.ax_ = ax
self.figure_ = ax.figure
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
*,
grid_resolution=100,
eps=1.0,
plot_method="contourf",
response_method="auto",
class_of_interest=None,
xlabel=None,
ylabel=None,
ax=None,
**kwargs,
):
"""Plot decision boundary given an estimator.
Read more in the :ref:`User Guide <visualizations>`.
Parameters
----------
estimator : object
Trained estimator used to plot the decision boundary.
X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
Input data that should be only 2-dimensional.
grid_resolution : int, default=100
Number of grid points to use for plotting decision boundary.
Higher values will make the plot look nicer but be slower to
render.
eps : float, default=1.0
Extends the minimum and maximum values of X for evaluating the
response function.
plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
Plotting method to call when plotting the response. Please refer
to the following matplotlib documentation for details:
:func:`contourf <matplotlib.pyplot.contourf>`,
:func:`contour <matplotlib.pyplot.contour>`,
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.
response_method : {'auto', 'predict_proba', 'decision_function', \
'predict'}, default='auto'
Specifies whether to use :term:`predict_proba`,
:term:`decision_function`, :term:`predict` as the target response.
If set to 'auto', the response method is tried in the following order:
:term:`decision_function`, :term:`predict_proba`, :term:`predict`.
For multiclass problems, :term:`predict` is selected when
`response_method="auto"`.
class_of_interest : int, float, bool or str, default=None
The class considered when plotting the decision. If None,
`estimator.classes_[1]` is considered as the positive class
for binary classifiers. For multiclass classifiers, passing
an explicit value for `class_of_interest` is mandatory.
.. versionadded:: 1.4
xlabel : str, default=None
The label used for the x-axis. If `None`, an attempt is made to
extract a label from `X` if it is a dataframe, otherwise an empty
string is used.
ylabel : str, default=None
The label used for the y-axis. If `None`, an attempt is made to
extract a label from `X` if it is a dataframe, otherwise an empty
string is used.
ax : Matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Additional keyword arguments to be passed to the
`plot_method`.
Returns
-------
display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
Object that stores the result.
See Also
--------
DecisionBoundaryDisplay : Decision boundary visualization.
sklearn.metrics.ConfusionMatrixDisplay.from_estimator : Plot the
confusion matrix given an estimator, the data, and the label.
sklearn.metrics.ConfusionMatrixDisplay.from_predictions : Plot the
confusion matrix given the true and predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.inspection import DecisionBoundaryDisplay
>>> iris = load_iris()
>>> X = iris.data[:, :2]
>>> classifier = LogisticRegression().fit(X, iris.target)
>>> disp = DecisionBoundaryDisplay.from_estimator(
... classifier, X, response_method="predict",
... xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
... alpha=0.5,
... )
>>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
<...>
>>> plt.show()
"""
check_matplotlib_support(f"{cls.__name__}.from_estimator")
check_is_fitted(estimator)
if not grid_resolution > 1:
raise ValueError(
"grid_resolution must be greater than 1. Got"
f" {grid_resolution} instead."
)
if not eps >= 0:
raise ValueError(
f"eps must be greater than or equal to 0. Got {eps} instead."
)
possible_plot_methods = ("contourf", "contour", "pcolormesh")
if plot_method not in possible_plot_methods:
available_methods = ", ".join(possible_plot_methods)
raise ValueError(
f"plot_method must be one of {available_methods}. "
f"Got {plot_method} instead."
)
num_features = _num_features(X)
if num_features != 2:
raise ValueError(
f"n_features must be equal to 2. Got {num_features} instead."
)
x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1)
x0_min, x0_max = x0.min() - eps, x0.max() + eps
x1_min, x1_max = x1.min() - eps, x1.max() + eps
xx0, xx1 = np.meshgrid(
np.linspace(x0_min, x0_max, grid_resolution),
np.linspace(x1_min, x1_max, grid_resolution),
)
if hasattr(X, "iloc"):
# we need to preserve the feature names and therefore get an empty dataframe
X_grid = X.iloc[[], :].copy()
X_grid.iloc[:, 0] = xx0.ravel()
X_grid.iloc[:, 1] = xx1.ravel()
else:
X_grid = np.c_[xx0.ravel(), xx1.ravel()]
prediction_method = _check_boundary_response_method(
estimator, response_method, class_of_interest
)
try:
response, _, response_method_used = _get_response_values(
estimator,
X_grid,
response_method=prediction_method,
pos_label=class_of_interest,
return_response_method_used=True,
)
except ValueError as exc:
if "is not a valid label" in str(exc):
# re-raise a more informative error message since `pos_label` is unknown
# to our user when interacting with
# `DecisionBoundaryDisplay.from_estimator`
raise ValueError(
f"class_of_interest={class_of_interest} is not a valid label: It "
f"should be one of {estimator.classes_}"
) from exc
raise
# convert classes predictions into integers
if response_method_used == "predict" and hasattr(estimator, "classes_"):
encoder = LabelEncoder()
encoder.classes_ = estimator.classes_
response = encoder.transform(response)
if response.ndim != 1:
if is_regressor(estimator):
raise ValueError("Multi-output regressors are not supported")
# For the multiclass case, `_get_response_values` returns the response
# as-is. Thus, we have a column per class and we need to select the column
# corresponding to the positive class.
col_idx = np.flatnonzero(estimator.classes_ == class_of_interest)[0]
response = response[:, col_idx]
if xlabel is None:
xlabel = X.columns[0] if hasattr(X, "columns") else ""
if ylabel is None:
ylabel = X.columns[1] if hasattr(X, "columns") else ""
display = cls(
xx0=xx0,
xx1=xx1,
response=response.reshape(xx0.shape),
xlabel=xlabel,
ylabel=ylabel,
)
return display.plot(ax=ax, plot_method=plot_method, **kwargs)