ai-content-maker/.venv/Lib/site-packages/sklearn/utils/tests/test_stats.py

99 lines
2.7 KiB
Python

import numpy as np
from numpy.testing import assert_allclose
from pytest import approx
from sklearn.utils.stats import _weighted_percentile
def test_weighted_percentile():
y = np.empty(102, dtype=np.float64)
y[:50] = 0
y[-51:] = 2
y[-1] = 100000
y[50] = 1
sw = np.ones(102, dtype=np.float64)
sw[-1] = 0.0
score = _weighted_percentile(y, sw, 50)
assert approx(score) == 1
def test_weighted_percentile_equal():
y = np.empty(102, dtype=np.float64)
y.fill(0.0)
sw = np.ones(102, dtype=np.float64)
sw[-1] = 0.0
score = _weighted_percentile(y, sw, 50)
assert score == 0
def test_weighted_percentile_zero_weight():
y = np.empty(102, dtype=np.float64)
y.fill(1.0)
sw = np.ones(102, dtype=np.float64)
sw.fill(0.0)
score = _weighted_percentile(y, sw, 50)
assert approx(score) == 1.0
def test_weighted_percentile_zero_weight_zero_percentile():
y = np.array([0, 1, 2, 3, 4, 5])
sw = np.array([0, 0, 1, 1, 1, 0])
score = _weighted_percentile(y, sw, 0)
assert approx(score) == 2
score = _weighted_percentile(y, sw, 50)
assert approx(score) == 3
score = _weighted_percentile(y, sw, 100)
assert approx(score) == 4
def test_weighted_median_equal_weights():
# Checks weighted percentile=0.5 is same as median when weights equal
rng = np.random.RandomState(0)
# Odd size as _weighted_percentile takes lower weighted percentile
x = rng.randint(10, size=11)
weights = np.ones(x.shape)
median = np.median(x)
w_median = _weighted_percentile(x, weights)
assert median == approx(w_median)
def test_weighted_median_integer_weights():
# Checks weighted percentile=0.5 is same as median when manually weight
# data
rng = np.random.RandomState(0)
x = rng.randint(20, size=10)
weights = rng.choice(5, size=10)
x_manual = np.repeat(x, weights)
median = np.median(x_manual)
w_median = _weighted_percentile(x, weights)
assert median == approx(w_median)
def test_weighted_percentile_2d():
# Check for when array 2D and sample_weight 1D
rng = np.random.RandomState(0)
x1 = rng.randint(10, size=10)
w1 = rng.choice(5, size=10)
x2 = rng.randint(20, size=10)
x_2d = np.vstack((x1, x2)).T
w_median = _weighted_percentile(x_2d, w1)
p_axis_0 = [_weighted_percentile(x_2d[:, i], w1) for i in range(x_2d.shape[1])]
assert_allclose(w_median, p_axis_0)
# Check when array and sample_weight boht 2D
w2 = rng.choice(5, size=10)
w_2d = np.vstack((w1, w2)).T
w_median = _weighted_percentile(x_2d, w_2d)
p_axis_0 = [
_weighted_percentile(x_2d[:, i], w_2d[:, i]) for i in range(x_2d.shape[1])
]
assert_allclose(w_median, p_axis_0)