ai-content-maker/.venv/Lib/site-packages/sympy/assumptions/handlers/ntheory.py

268 lines
7.0 KiB
Python

"""
Handlers for keys related to number theory: prime, even, odd, etc.
"""
from sympy.assumptions import Q, ask
from sympy.core import Add, Basic, Expr, Float, Mul, Pow, S
from sympy.core.numbers import (ImaginaryUnit, Infinity, Integer, NaN,
NegativeInfinity, NumberSymbol, Rational)
from sympy.functions import Abs, im, re
from sympy.ntheory import isprime
from sympy.multipledispatch import MDNotImplementedError
from ..predicates.ntheory import (PrimePredicate, CompositePredicate,
EvenPredicate, OddPredicate)
# PrimePredicate
def _PrimePredicate_number(expr, assumptions):
# helper method
exact = not expr.atoms(Float)
try:
i = int(expr.round())
if (expr - i).equals(0) is False:
raise TypeError
except TypeError:
return False
if exact:
return isprime(i)
# when not exact, we won't give a True or False
# since the number represents an approximate value
@PrimePredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_prime
if ret is None:
raise MDNotImplementedError
return ret
@PrimePredicate.register(Basic)
def _(expr, assumptions):
if expr.is_number:
return _PrimePredicate_number(expr, assumptions)
@PrimePredicate.register(Mul)
def _(expr, assumptions):
if expr.is_number:
return _PrimePredicate_number(expr, assumptions)
for arg in expr.args:
if not ask(Q.integer(arg), assumptions):
return None
for arg in expr.args:
if arg.is_number and arg.is_composite:
return False
@PrimePredicate.register(Pow)
def _(expr, assumptions):
"""
Integer**Integer -> !Prime
"""
if expr.is_number:
return _PrimePredicate_number(expr, assumptions)
if ask(Q.integer(expr.exp), assumptions) and \
ask(Q.integer(expr.base), assumptions):
return False
@PrimePredicate.register(Integer)
def _(expr, assumptions):
return isprime(expr)
@PrimePredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit)
def _(expr, assumptions):
return False
@PrimePredicate.register(Float)
def _(expr, assumptions):
return _PrimePredicate_number(expr, assumptions)
@PrimePredicate.register(NumberSymbol)
def _(expr, assumptions):
return _PrimePredicate_number(expr, assumptions)
@PrimePredicate.register(NaN)
def _(expr, assumptions):
return None
# CompositePredicate
@CompositePredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_composite
if ret is None:
raise MDNotImplementedError
return ret
@CompositePredicate.register(Basic)
def _(expr, assumptions):
_positive = ask(Q.positive(expr), assumptions)
if _positive:
_integer = ask(Q.integer(expr), assumptions)
if _integer:
_prime = ask(Q.prime(expr), assumptions)
if _prime is None:
return
# Positive integer which is not prime is not
# necessarily composite
if expr.equals(1):
return False
return not _prime
else:
return _integer
else:
return _positive
# EvenPredicate
def _EvenPredicate_number(expr, assumptions):
# helper method
try:
i = int(expr.round())
if not (expr - i).equals(0):
raise TypeError
except TypeError:
return False
if isinstance(expr, (float, Float)):
return False
return i % 2 == 0
@EvenPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_even
if ret is None:
raise MDNotImplementedError
return ret
@EvenPredicate.register(Basic)
def _(expr, assumptions):
if expr.is_number:
return _EvenPredicate_number(expr, assumptions)
@EvenPredicate.register(Mul)
def _(expr, assumptions):
"""
Even * Integer -> Even
Even * Odd -> Even
Integer * Odd -> ?
Odd * Odd -> Odd
Even * Even -> Even
Integer * Integer -> Even if Integer + Integer = Odd
otherwise -> ?
"""
if expr.is_number:
return _EvenPredicate_number(expr, assumptions)
even, odd, irrational, acc = False, 0, False, 1
for arg in expr.args:
# check for all integers and at least one even
if ask(Q.integer(arg), assumptions):
if ask(Q.even(arg), assumptions):
even = True
elif ask(Q.odd(arg), assumptions):
odd += 1
elif not even and acc != 1:
if ask(Q.odd(acc + arg), assumptions):
even = True
elif ask(Q.irrational(arg), assumptions):
# one irrational makes the result False
# two makes it undefined
if irrational:
break
irrational = True
else:
break
acc = arg
else:
if irrational:
return False
if even:
return True
if odd == len(expr.args):
return False
@EvenPredicate.register(Add)
def _(expr, assumptions):
"""
Even + Odd -> Odd
Even + Even -> Even
Odd + Odd -> Even
"""
if expr.is_number:
return _EvenPredicate_number(expr, assumptions)
_result = True
for arg in expr.args:
if ask(Q.even(arg), assumptions):
pass
elif ask(Q.odd(arg), assumptions):
_result = not _result
else:
break
else:
return _result
@EvenPredicate.register(Pow)
def _(expr, assumptions):
if expr.is_number:
return _EvenPredicate_number(expr, assumptions)
if ask(Q.integer(expr.exp), assumptions):
if ask(Q.positive(expr.exp), assumptions):
return ask(Q.even(expr.base), assumptions)
elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions):
return False
elif expr.base is S.NegativeOne:
return False
@EvenPredicate.register(Integer)
def _(expr, assumptions):
return not bool(expr.p & 1)
@EvenPredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit)
def _(expr, assumptions):
return False
@EvenPredicate.register(NumberSymbol)
def _(expr, assumptions):
return _EvenPredicate_number(expr, assumptions)
@EvenPredicate.register(Abs)
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return ask(Q.even(expr.args[0]), assumptions)
@EvenPredicate.register(re)
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return ask(Q.even(expr.args[0]), assumptions)
@EvenPredicate.register(im)
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return True
@EvenPredicate.register(NaN)
def _(expr, assumptions):
return None
# OddPredicate
@OddPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_odd
if ret is None:
raise MDNotImplementedError
return ret
@OddPredicate.register(Basic)
def _(expr, assumptions):
_integer = ask(Q.integer(expr), assumptions)
if _integer:
_even = ask(Q.even(expr), assumptions)
if _even is None:
return None
return not _even
return _integer