ai-content-maker/.venv/Lib/site-packages/sympy/assumptions/predicates/ntheory.py

127 lines
2.5 KiB
Python

from sympy.assumptions import Predicate
from sympy.multipledispatch import Dispatcher
class PrimePredicate(Predicate):
"""
Prime number predicate.
Explanation
===========
``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater
than 1 that has no positive divisors other than ``1`` and the
number itself.
Examples
========
>>> from sympy import Q, ask
>>> ask(Q.prime(0))
False
>>> ask(Q.prime(1))
False
>>> ask(Q.prime(2))
True
>>> ask(Q.prime(20))
False
>>> ask(Q.prime(-3))
False
"""
name = 'prime'
handler = Dispatcher(
"PrimeHandler",
doc=("Handler for key 'prime'. Test that an expression represents a prime"
" number. When the expression is an exact number, the result (when True)"
" is subject to the limitations of isprime() which is used to return the "
"result.")
)
class CompositePredicate(Predicate):
"""
Composite number predicate.
Explanation
===========
``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has
at least one positive divisor other than ``1`` and the number itself.
Examples
========
>>> from sympy import Q, ask
>>> ask(Q.composite(0))
False
>>> ask(Q.composite(1))
False
>>> ask(Q.composite(2))
False
>>> ask(Q.composite(20))
True
"""
name = 'composite'
handler = Dispatcher("CompositeHandler", doc="Handler for key 'composite'.")
class EvenPredicate(Predicate):
"""
Even number predicate.
Explanation
===========
``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even
integers.
Examples
========
>>> from sympy import Q, ask, pi
>>> ask(Q.even(0))
True
>>> ask(Q.even(2))
True
>>> ask(Q.even(3))
False
>>> ask(Q.even(pi))
False
"""
name = 'even'
handler = Dispatcher("EvenHandler", doc="Handler for key 'even'.")
class OddPredicate(Predicate):
"""
Odd number predicate.
Explanation
===========
``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers.
Examples
========
>>> from sympy import Q, ask, pi
>>> ask(Q.odd(0))
False
>>> ask(Q.odd(2))
False
>>> ask(Q.odd(3))
True
>>> ask(Q.odd(pi))
False
"""
name = 'odd'
handler = Dispatcher(
"OddHandler",
doc=("Handler for key 'odd'. Test that an expression represents an odd"
" number.")
)