478 lines
16 KiB
Python
478 lines
16 KiB
Python
"""
|
|
Some examples have been taken from:
|
|
|
|
http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
|
|
"""
|
|
from sympy import KroneckerProduct
|
|
from sympy.combinatorics import Permutation
|
|
from sympy.concrete.summations import Sum
|
|
from sympy.core.numbers import Rational
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import symbols
|
|
from sympy.functions.elementary.exponential import (exp, log)
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
|
from sympy.matrices.expressions.determinant import Determinant
|
|
from sympy.matrices.expressions.diagonal import DiagMatrix
|
|
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product)
|
|
from sympy.matrices.expressions.inverse import Inverse
|
|
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
|
from sympy.matrices.expressions.special import OneMatrix
|
|
from sympy.matrices.expressions.trace import Trace
|
|
from sympy.matrices.expressions.matadd import MatAdd
|
|
from sympy.matrices.expressions.matmul import MatMul
|
|
from sympy.matrices.expressions.special import (Identity, ZeroMatrix)
|
|
from sympy.tensor.array.array_derivatives import ArrayDerivative
|
|
from sympy.matrices.expressions import hadamard_power
|
|
from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims
|
|
|
|
i, j, k = symbols("i j k")
|
|
m, n = symbols("m n")
|
|
|
|
X = MatrixSymbol("X", k, k)
|
|
x = MatrixSymbol("x", k, 1)
|
|
y = MatrixSymbol("y", k, 1)
|
|
|
|
A = MatrixSymbol("A", k, k)
|
|
B = MatrixSymbol("B", k, k)
|
|
C = MatrixSymbol("C", k, k)
|
|
D = MatrixSymbol("D", k, k)
|
|
|
|
a = MatrixSymbol("a", k, 1)
|
|
b = MatrixSymbol("b", k, 1)
|
|
c = MatrixSymbol("c", k, 1)
|
|
d = MatrixSymbol("d", k, 1)
|
|
|
|
|
|
KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1))
|
|
|
|
|
|
def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
|
|
# TODO: this is commented because it slows down the tests.
|
|
return
|
|
|
|
expr = expr.xreplace({k: dim})
|
|
x = x.xreplace({k: dim})
|
|
diffexpr = diffexpr.xreplace({k: dim})
|
|
|
|
expr = expr.as_explicit()
|
|
x = x.as_explicit()
|
|
diffexpr = diffexpr.as_explicit()
|
|
|
|
assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr
|
|
|
|
|
|
def test_matrix_derivative_by_scalar():
|
|
assert A.diff(i) == ZeroMatrix(k, k)
|
|
assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
|
|
assert x.diff(i) == ZeroMatrix(k, 1)
|
|
assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
|
|
assert (x*x.T).diff(i) == ZeroMatrix(k, k)
|
|
assert (x + y).diff(i) == ZeroMatrix(k, 1)
|
|
assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
|
|
assert hadamard_power(x, i).diff(i).dummy_eq(
|
|
HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
|
|
assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
|
|
assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
|
|
assert (i*x).diff(i) == x
|
|
assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
|
|
assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
|
|
assert Trace(i**2*X).diff(i) == 2*i*Trace(X)
|
|
|
|
mu = symbols("mu")
|
|
expr = (2*mu*x)
|
|
assert expr.diff(x) == 2*mu*Identity(k)
|
|
|
|
|
|
def test_one_matrix():
|
|
assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1)
|
|
|
|
|
|
def test_matrix_derivative_non_matrix_result():
|
|
# This is a 4-dimensional array:
|
|
I = Identity(k)
|
|
AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2))
|
|
assert A.diff(A) == AdA
|
|
assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3))
|
|
assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2))
|
|
assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA)
|
|
assert (A + B).diff(A) == AdA
|
|
|
|
|
|
def test_matrix_derivative_trivial_cases():
|
|
# Cookbook example 33:
|
|
# TODO: find a way to represent a four-dimensional zero-array:
|
|
assert X.diff(A) == ArrayDerivative(X, A)
|
|
|
|
|
|
def test_matrix_derivative_with_inverse():
|
|
|
|
# Cookbook example 61:
|
|
expr = a.T*Inverse(X)*b
|
|
assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T
|
|
|
|
# Cookbook example 62:
|
|
expr = Determinant(Inverse(X))
|
|
# Not implemented yet:
|
|
# assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T
|
|
|
|
# Cookbook example 63:
|
|
expr = Trace(A*Inverse(X)*B)
|
|
assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T
|
|
|
|
# Cookbook example 64:
|
|
expr = Trace(Inverse(X + A))
|
|
assert expr.diff(X) == -(Inverse(X + A)).T**2
|
|
|
|
|
|
def test_matrix_derivative_vectors_and_scalars():
|
|
|
|
assert x.diff(x) == Identity(k)
|
|
assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i)
|
|
|
|
assert x.T.diff(x) == Identity(k)
|
|
|
|
# Cookbook example 69:
|
|
expr = x.T*a
|
|
assert expr.diff(x) == a
|
|
assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0]
|
|
expr = a.T*x
|
|
assert expr.diff(x) == a
|
|
|
|
# Cookbook example 70:
|
|
expr = a.T*X*b
|
|
assert expr.diff(X) == a*b.T
|
|
|
|
# Cookbook example 71:
|
|
expr = a.T*X.T*b
|
|
assert expr.diff(X) == b*a.T
|
|
|
|
# Cookbook example 72:
|
|
expr = a.T*X*a
|
|
assert expr.diff(X) == a*a.T
|
|
expr = a.T*X.T*a
|
|
assert expr.diff(X) == a*a.T
|
|
|
|
# Cookbook example 77:
|
|
expr = b.T*X.T*X*c
|
|
assert expr.diff(X) == X*b*c.T + X*c*b.T
|
|
|
|
# Cookbook example 78:
|
|
expr = (B*x + b).T*C*(D*x + d)
|
|
assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)
|
|
|
|
# Cookbook example 81:
|
|
expr = x.T*B*x
|
|
assert expr.diff(x) == B*x + B.T*x
|
|
|
|
# Cookbook example 82:
|
|
expr = b.T*X.T*D*X*c
|
|
assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T
|
|
|
|
# Cookbook example 83:
|
|
expr = (X*b + c).T*D*(X*b + c)
|
|
assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
|
|
assert str(expr[0, 0].diff(X[m, n]).doit()) == \
|
|
'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))'
|
|
|
|
# See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957
|
|
expr = x*x.T*x
|
|
I = Identity(k)
|
|
assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T
|
|
|
|
|
|
def test_matrix_derivatives_of_traces():
|
|
|
|
expr = Trace(A)*A
|
|
I = Identity(k)
|
|
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
|
|
assert expr[i, j].diff(A[m, n]).doit() == (
|
|
KDelta(i, m)*KDelta(j, n)*Trace(A) +
|
|
KDelta(m, n)*A[i, j]
|
|
)
|
|
|
|
## First order:
|
|
|
|
# Cookbook example 99:
|
|
expr = Trace(X)
|
|
assert expr.diff(X) == Identity(k)
|
|
assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)
|
|
|
|
# Cookbook example 100:
|
|
expr = Trace(X*A)
|
|
assert expr.diff(X) == A.T
|
|
assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]
|
|
|
|
# Cookbook example 101:
|
|
expr = Trace(A*X*B)
|
|
assert expr.diff(X) == A.T*B.T
|
|
assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n])
|
|
|
|
# Cookbook example 102:
|
|
expr = Trace(A*X.T*B)
|
|
assert expr.diff(X) == B*A
|
|
|
|
# Cookbook example 103:
|
|
expr = Trace(X.T*A)
|
|
assert expr.diff(X) == A
|
|
|
|
# Cookbook example 104:
|
|
expr = Trace(A*X.T)
|
|
assert expr.diff(X) == A
|
|
|
|
# Cookbook example 105:
|
|
# TODO: TensorProduct is not supported
|
|
#expr = Trace(TensorProduct(A, X))
|
|
#assert expr.diff(X) == Trace(A)*Identity(k)
|
|
|
|
## Second order:
|
|
|
|
# Cookbook example 106:
|
|
expr = Trace(X**2)
|
|
assert expr.diff(X) == 2*X.T
|
|
|
|
# Cookbook example 107:
|
|
expr = Trace(X**2*B)
|
|
assert expr.diff(X) == (X*B + B*X).T
|
|
expr = Trace(MatMul(X, X, B))
|
|
assert expr.diff(X) == (X*B + B*X).T
|
|
|
|
# Cookbook example 108:
|
|
expr = Trace(X.T*B*X)
|
|
assert expr.diff(X) == B*X + B.T*X
|
|
|
|
# Cookbook example 109:
|
|
expr = Trace(B*X*X.T)
|
|
assert expr.diff(X) == B*X + B.T*X
|
|
|
|
# Cookbook example 110:
|
|
expr = Trace(X*X.T*B)
|
|
assert expr.diff(X) == B*X + B.T*X
|
|
|
|
# Cookbook example 111:
|
|
expr = Trace(X*B*X.T)
|
|
assert expr.diff(X) == X*B.T + X*B
|
|
|
|
# Cookbook example 112:
|
|
expr = Trace(B*X.T*X)
|
|
assert expr.diff(X) == X*B.T + X*B
|
|
|
|
# Cookbook example 113:
|
|
expr = Trace(X.T*X*B)
|
|
assert expr.diff(X) == X*B.T + X*B
|
|
|
|
# Cookbook example 114:
|
|
expr = Trace(A*X*B*X)
|
|
assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T
|
|
|
|
# Cookbook example 115:
|
|
expr = Trace(X.T*X)
|
|
assert expr.diff(X) == 2*X
|
|
expr = Trace(X*X.T)
|
|
assert expr.diff(X) == 2*X
|
|
|
|
# Cookbook example 116:
|
|
expr = Trace(B.T*X.T*C*X*B)
|
|
assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T
|
|
|
|
# Cookbook example 117:
|
|
expr = Trace(X.T*B*X*C)
|
|
assert expr.diff(X) == B*X*C + B.T*X*C.T
|
|
|
|
# Cookbook example 118:
|
|
expr = Trace(A*X*B*X.T*C)
|
|
assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B
|
|
|
|
# Cookbook example 119:
|
|
expr = Trace((A*X*B + C)*(A*X*B + C).T)
|
|
assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T
|
|
|
|
# Cookbook example 120:
|
|
# TODO: no support for TensorProduct.
|
|
# expr = Trace(TensorProduct(X, X))
|
|
# expr = Trace(X)*Trace(X)
|
|
# expr.diff(X) == 2*Trace(X)*Identity(k)
|
|
|
|
# Higher Order
|
|
|
|
# Cookbook example 121:
|
|
expr = Trace(X**k)
|
|
#assert expr.diff(X) == k*(X**(k-1)).T
|
|
|
|
# Cookbook example 122:
|
|
expr = Trace(A*X**k)
|
|
#assert expr.diff(X) == # Needs indices
|
|
|
|
# Cookbook example 123:
|
|
expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
|
|
assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T
|
|
|
|
# Other
|
|
|
|
# Cookbook example 124:
|
|
expr = Trace(A*X**(-1)*B)
|
|
assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T
|
|
|
|
# Cookbook example 125:
|
|
expr = Trace(Inverse(X.T*C*X)*A)
|
|
# Warning: result in the cookbook is equivalent if B and C are symmetric:
|
|
assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T
|
|
|
|
# Cookbook example 126:
|
|
expr = Trace((X.T*C*X).inv()*(X.T*B*X))
|
|
assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()
|
|
|
|
# Cookbook example 127:
|
|
expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
|
|
# Warning: result in the cookbook is equivalent if B and C are symmetric:
|
|
assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)
|
|
|
|
|
|
def test_derivatives_of_complicated_matrix_expr():
|
|
expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
|
|
result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
|
|
assert expr.diff(X) == result
|
|
|
|
|
|
def test_mixed_deriv_mixed_expressions():
|
|
|
|
expr = 3*Trace(A)
|
|
assert expr.diff(A) == 3*Identity(k)
|
|
|
|
expr = k
|
|
deriv = expr.diff(A)
|
|
assert isinstance(deriv, ZeroMatrix)
|
|
assert deriv == ZeroMatrix(k, k)
|
|
|
|
expr = Trace(A)**2
|
|
assert expr.diff(A) == (2*Trace(A))*Identity(k)
|
|
|
|
expr = Trace(A)*A
|
|
I = Identity(k)
|
|
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
|
|
|
|
expr = Trace(Trace(A)*A)
|
|
assert expr.diff(A) == (2*Trace(A))*Identity(k)
|
|
|
|
expr = Trace(Trace(Trace(A)*A)*A)
|
|
assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)
|
|
|
|
|
|
def test_derivatives_matrix_norms():
|
|
|
|
expr = x.T*y
|
|
assert expr.diff(x) == y
|
|
assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0]
|
|
|
|
expr = (x.T*y)**S.Half
|
|
assert expr.diff(x) == y/(2*sqrt(x.T*y))
|
|
|
|
expr = (x.T*x)**S.Half
|
|
assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2)
|
|
|
|
expr = (c.T*a*x.T*b)**S.Half
|
|
assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2
|
|
|
|
expr = (c.T*a*x.T*b)**Rational(1, 3)
|
|
assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3
|
|
|
|
expr = (a.T*X*b)**S.Half
|
|
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
|
|
|
|
expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
|
|
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T
|
|
|
|
|
|
def test_derivatives_elementwise_applyfunc():
|
|
|
|
expr = x.applyfunc(tan)
|
|
assert expr.diff(x).dummy_eq(
|
|
DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1)))
|
|
assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m)
|
|
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
|
|
|
|
expr = (i**2*x).applyfunc(sin)
|
|
assert expr.diff(i).dummy_eq(
|
|
HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos)))
|
|
assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0])
|
|
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
|
|
|
|
expr = (log(i)*A*B).applyfunc(sin)
|
|
assert expr.diff(i).dummy_eq(
|
|
HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos)))
|
|
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
|
|
|
|
expr = A*x.applyfunc(exp)
|
|
# TODO: restore this result (currently returning the transpose):
|
|
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T)
|
|
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
|
|
|
|
expr = x.T*A*x + k*y.applyfunc(sin).T*x
|
|
assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin))
|
|
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
|
|
|
|
expr = x.applyfunc(sin).T*y
|
|
# TODO: restore (currently returning the transpose):
|
|
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y)
|
|
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
|
|
|
|
expr = (a.T * X * b).applyfunc(sin)
|
|
assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T)
|
|
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
|
|
|
|
expr = a.T * X.applyfunc(sin) * b
|
|
assert expr.diff(X).dummy_eq(
|
|
DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b))
|
|
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
|
|
|
|
expr = a.T * (A*X*B).applyfunc(sin) * b
|
|
assert expr.diff(X).dummy_eq(
|
|
A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T)
|
|
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
|
|
|
|
expr = a.T * (A*X*b).applyfunc(sin) * b.T
|
|
# TODO: not implemented
|
|
#assert expr.diff(X) == ...
|
|
#_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
|
|
|
|
expr = a.T*A*X.applyfunc(sin)*B*b
|
|
assert expr.diff(X).dummy_eq(
|
|
HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos)))
|
|
|
|
expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
|
|
# TODO: wrong
|
|
# assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T
|
|
|
|
expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
|
|
# TODO: wrong
|
|
# assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)
|
|
|
|
|
|
def test_derivatives_of_hadamard_expressions():
|
|
|
|
# Hadamard Product
|
|
|
|
expr = hadamard_product(a, x, b)
|
|
assert expr.diff(x) == DiagMatrix(hadamard_product(b, a))
|
|
|
|
expr = a.T*hadamard_product(A, X, B)*b
|
|
assert expr.diff(X) == HadamardProduct(a*b.T, A, B)
|
|
|
|
# Hadamard Power
|
|
|
|
expr = hadamard_power(x, 2)
|
|
assert expr.diff(x).doit() == 2*DiagMatrix(x)
|
|
|
|
expr = hadamard_power(x.T, 2)
|
|
assert expr.diff(x).doit() == 2*DiagMatrix(x)
|
|
|
|
expr = hadamard_power(x, S.Half)
|
|
assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2)))
|
|
|
|
expr = hadamard_power(a.T*X*b, 2)
|
|
assert expr.diff(X) == 2*a*a.T*X*b*b.T
|
|
|
|
expr = hadamard_power(a.T*X*b, S.Half)
|
|
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
|