1246 lines
58 KiB
Python
1246 lines
58 KiB
Python
from sympy.core.add import Add
|
|
from sympy.core.function import Function
|
|
from sympy.core.mul import Mul
|
|
from sympy.core.numbers import (I, Rational, oo)
|
|
from sympy.core.power import Pow
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import symbols
|
|
from sympy.functions.elementary.exponential import exp
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.matrices.dense import eye
|
|
from sympy.polys.polytools import factor
|
|
from sympy.polys.rootoftools import CRootOf
|
|
from sympy.simplify.simplify import simplify
|
|
from sympy.core.containers import Tuple
|
|
from sympy.matrices import ImmutableMatrix, Matrix
|
|
from sympy.physics.control import (TransferFunction, Series, Parallel,
|
|
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback,
|
|
bilinear, backward_diff)
|
|
from sympy.testing.pytest import raises
|
|
|
|
a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn, T = symbols('a, x, b, s, g, d, p, k,\
|
|
a0:3, b0:3, tau, zeta, wn, T')
|
|
TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
|
TF2 = TransferFunction(k, 1, s)
|
|
TF3 = TransferFunction(a2*p - s, a2*s + p, s)
|
|
|
|
|
|
def test_TransferFunction_construction():
|
|
tf = TransferFunction(s + 1, s**2 + s + 1, s)
|
|
assert tf.num == (s + 1)
|
|
assert tf.den == (s**2 + s + 1)
|
|
assert tf.args == (s + 1, s**2 + s + 1, s)
|
|
|
|
tf1 = TransferFunction(s + 4, s - 5, s)
|
|
assert tf1.num == (s + 4)
|
|
assert tf1.den == (s - 5)
|
|
assert tf1.args == (s + 4, s - 5, s)
|
|
|
|
# using different polynomial variables.
|
|
tf2 = TransferFunction(p + 3, p**2 - 9, p)
|
|
assert tf2.num == (p + 3)
|
|
assert tf2.den == (p**2 - 9)
|
|
assert tf2.args == (p + 3, p**2 - 9, p)
|
|
|
|
tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
|
|
assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
|
|
|
|
# no pole-zero cancellation on its own.
|
|
tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)
|
|
assert tf4.den == (s - 1)*(s + 5)
|
|
assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s)
|
|
|
|
tf4_ = TransferFunction(p + 2, p + 2, p)
|
|
assert tf4_.args == (p + 2, p + 2, p)
|
|
|
|
tf5 = TransferFunction(s - 1, 4 - p, s)
|
|
assert tf5.args == (s - 1, 4 - p, s)
|
|
|
|
tf5_ = TransferFunction(s - 1, s - 1, s)
|
|
assert tf5_.args == (s - 1, s - 1, s)
|
|
|
|
tf6 = TransferFunction(5, 6, s)
|
|
assert tf6.num == 5
|
|
assert tf6.den == 6
|
|
assert tf6.args == (5, 6, s)
|
|
|
|
tf6_ = TransferFunction(1/2, 4, s)
|
|
assert tf6_.num == 0.5
|
|
assert tf6_.den == 4
|
|
assert tf6_.args == (0.500000000000000, 4, s)
|
|
|
|
tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s)
|
|
tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p)
|
|
assert not tf7 == tf8
|
|
|
|
tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
|
|
tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
|
|
assert tf7_ == tf8_
|
|
assert -(-tf7_) == tf7_ == -(-(-(-tf7_)))
|
|
|
|
tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s)
|
|
assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s)
|
|
|
|
tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
|
|
tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
|
|
assert tf10.args == (d + p**3, a + d*s + g*s**2, p)
|
|
assert tf10_ == tf10
|
|
|
|
tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s)
|
|
assert tf11.num == (a0 + a1*s)
|
|
assert tf11.den == (b0 + b1*s + b2*s**2)
|
|
assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s)
|
|
|
|
# when just the numerator is 0, leave the denominator alone.
|
|
tf12 = TransferFunction(0, p**2 - p + 1, p)
|
|
assert tf12.args == (0, p**2 - p + 1, p)
|
|
|
|
tf13 = TransferFunction(0, 1, s)
|
|
assert tf13.args == (0, 1, s)
|
|
|
|
# float exponents
|
|
tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s)
|
|
assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s)
|
|
|
|
tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p)
|
|
assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p)
|
|
|
|
omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i')
|
|
tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s)
|
|
assert tf18.num == k_i/s + k_o*s + k_p
|
|
assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s)
|
|
|
|
# ValueError when denominator is zero.
|
|
raises(ValueError, lambda: TransferFunction(4, 0, s))
|
|
raises(ValueError, lambda: TransferFunction(s, 0, s))
|
|
raises(ValueError, lambda: TransferFunction(0, 0, s))
|
|
|
|
raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s))
|
|
|
|
raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3))
|
|
raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4))
|
|
raises(TypeError, lambda: TransferFunction(3, 4, 8))
|
|
|
|
|
|
def test_TransferFunction_functions():
|
|
# classmethod from_rational_expression
|
|
expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False)
|
|
expr_2 = s/0
|
|
expr_3 = (p*s**2 + 5*s)/(s + 1)**3
|
|
expr_4 = 6
|
|
expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2))
|
|
expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9))
|
|
tf = TransferFunction(s + 1, s**2 + 2, s)
|
|
delay = exp(-s/tau)
|
|
expr_7 = delay*tf.to_expr()
|
|
H1 = TransferFunction.from_rational_expression(expr_7, s)
|
|
H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s)
|
|
expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False)
|
|
|
|
assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s)
|
|
raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2))
|
|
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3))
|
|
assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s)
|
|
assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p)
|
|
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4))
|
|
assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s)
|
|
assert TransferFunction.from_rational_expression(expr_5, s) == \
|
|
TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s)
|
|
assert TransferFunction.from_rational_expression(expr_6, s) == \
|
|
TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s)
|
|
assert H1 == H2
|
|
assert TransferFunction.from_rational_expression(expr_8, s) == \
|
|
TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s)
|
|
|
|
# explicitly cancel poles and zeros.
|
|
tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s)
|
|
a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s)
|
|
assert tf0.simplify() == simplify(tf0) == a
|
|
|
|
tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
|
|
b = TransferFunction(p + 3, p + 5, p)
|
|
assert tf1.simplify() == simplify(tf1) == b
|
|
|
|
# expand the numerator and the denominator.
|
|
G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
|
|
G2 = TransferFunction(1, -3, p)
|
|
c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p)
|
|
d = (b0*s**s + b1*p**s)*(b2*s*p + p**p)
|
|
e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p)
|
|
f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s
|
|
g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s
|
|
G3 = TransferFunction(c, d, s)
|
|
G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p)
|
|
|
|
assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s)
|
|
assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p)
|
|
assert G2.expand() == G2
|
|
assert G3.expand() == TransferFunction(e, f, s)
|
|
assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p)
|
|
|
|
# purely symbolic polynomials.
|
|
p1 = a1*s + a0
|
|
p2 = b2*s**2 + b1*s + b0
|
|
SP1 = TransferFunction(p1, p2, s)
|
|
expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s)
|
|
expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s)
|
|
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_
|
|
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1
|
|
assert expect1_.evalf() == expect1
|
|
|
|
c1, d0, d1, d2 = symbols('c1, d0:3')
|
|
p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0
|
|
SP2 = TransferFunction(p3, p4, p)
|
|
expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p)
|
|
expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p)
|
|
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_
|
|
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2
|
|
assert expect2_.evalf() == expect2
|
|
|
|
SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s)
|
|
expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s)
|
|
expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s)
|
|
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_
|
|
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3
|
|
assert expect3_.evalf() == expect3
|
|
|
|
SP4 = TransferFunction(s - a1*p**3, a0*s + p, p)
|
|
expect4 = TransferFunction(7.0*p**3 + s, p - s, p)
|
|
expect4_ = TransferFunction(7*p**3 + s, p - s, p)
|
|
assert SP4.subs({a0: -1, a1: -7}) == expect4_
|
|
assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4
|
|
assert expect4_.evalf() == expect4
|
|
|
|
# Low-frequency (or DC) gain.
|
|
assert tf0.dc_gain() == 1
|
|
assert tf1.dc_gain() == Rational(3, 5)
|
|
assert SP2.dc_gain() == 0
|
|
assert expect4.dc_gain() == -1
|
|
assert expect2_.dc_gain() == 0
|
|
assert TransferFunction(1, s, s).dc_gain() == oo
|
|
|
|
# Poles of a transfer function.
|
|
tf_ = TransferFunction(x**3 - k, k, x)
|
|
_tf = TransferFunction(k, x**4 - k, x)
|
|
TF_ = TransferFunction(x**2, x**10 + x + x**2, x)
|
|
_TF = TransferFunction(x**10 + x + x**2, x**2, x)
|
|
assert G1.poles() == [I, I, -I, -I]
|
|
assert G2.poles() == []
|
|
assert tf1.poles() == [-5, 1]
|
|
assert expect4_.poles() == [s]
|
|
assert SP4.poles() == [-a0*s]
|
|
assert expect3.poles() == [-0.25*p]
|
|
assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I])
|
|
assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I])
|
|
assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))]
|
|
assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
|
|
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
|
|
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
|
|
raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles())
|
|
|
|
# Stability of a transfer function.
|
|
q, r = symbols('q, r', negative=True)
|
|
t = symbols('t', positive=True)
|
|
TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s)
|
|
stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s)
|
|
stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s)
|
|
|
|
assert G1.is_stable() is False
|
|
assert G2.is_stable() is True
|
|
assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve.
|
|
assert expect2.is_stable() is False
|
|
assert expect1.is_stable() is True
|
|
assert stable_tf.is_stable() is True
|
|
assert stable_tf_.is_stable() is True
|
|
assert TF_.is_stable() is False
|
|
assert expect4_.is_stable() is None # no assumption provided for the only pole 's'.
|
|
assert SP4.is_stable() is None
|
|
|
|
# Zeros of a transfer function.
|
|
assert G1.zeros() == [1, 1]
|
|
assert G2.zeros() == []
|
|
assert tf1.zeros() == [-3, 1]
|
|
assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 -
|
|
sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14]
|
|
assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2,
|
|
-(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2]
|
|
assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0),
|
|
1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125])
|
|
assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2,
|
|
-k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2]
|
|
assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
|
|
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
|
|
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
|
|
raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros())
|
|
|
|
# negation of TF.
|
|
tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s)
|
|
tf3 = TransferFunction(-3*p + 3, 1 - p, p)
|
|
assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s)
|
|
assert -tf3 == TransferFunction(3*p - 3, 1 - p, p)
|
|
|
|
# taking power of a TF.
|
|
tf4 = TransferFunction(p + 4, p - 3, p)
|
|
tf5 = TransferFunction(s**2 + 1, 1 - s, s)
|
|
expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s)
|
|
expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p)
|
|
assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1
|
|
assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2
|
|
assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s)
|
|
assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p)
|
|
assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
|
|
|
|
raises(ValueError, lambda: tf4**(s**2 + s - 1))
|
|
raises(ValueError, lambda: tf5**s)
|
|
raises(ValueError, lambda: tf4**tf5)
|
|
|
|
# SymPy's own functions.
|
|
tf = TransferFunction(s - 1, s**2 - 2*s + 1, s)
|
|
tf6 = TransferFunction(s + p, p**2 - 5, s)
|
|
assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s)
|
|
assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1
|
|
# subs & xreplace
|
|
assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s)
|
|
assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s)
|
|
assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s)
|
|
raises(TypeError, lambda: tf3.xreplace({p: exp(2)}))
|
|
assert tf3.subs(p, exp(2)) == tf3
|
|
|
|
tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
|
|
assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k)
|
|
assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
|
|
|
|
# Conversion to Expr with to_expr()
|
|
tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s)
|
|
tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s)
|
|
tf10 = TransferFunction(0, 1, s)
|
|
tf11 = TransferFunction(1, 1, s)
|
|
assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False)
|
|
assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False)
|
|
assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False)
|
|
assert tf11.to_expr() == Pow(1, -1, evaluate=False)
|
|
|
|
def test_TransferFunction_addition_and_subtraction():
|
|
tf1 = TransferFunction(s + 6, s - 5, s)
|
|
tf2 = TransferFunction(s + 3, s + 1, s)
|
|
tf3 = TransferFunction(s + 1, s**2 + s + 1, s)
|
|
tf4 = TransferFunction(p, 2 - p, p)
|
|
|
|
# addition
|
|
assert tf1 + tf2 == Parallel(tf1, tf2)
|
|
assert tf3 + tf1 == Parallel(tf3, tf1)
|
|
assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3)
|
|
assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3)
|
|
|
|
c = symbols("c", commutative=False)
|
|
raises(ValueError, lambda: tf1 + Matrix([1, 2, 3]))
|
|
raises(ValueError, lambda: tf2 + c)
|
|
raises(ValueError, lambda: tf3 + tf4)
|
|
raises(ValueError, lambda: tf1 + (s - 1))
|
|
raises(ValueError, lambda: tf1 + 8)
|
|
raises(ValueError, lambda: (1 - p**3) + tf1)
|
|
|
|
# subtraction
|
|
assert tf1 - tf2 == Parallel(tf1, -tf2)
|
|
assert tf3 - tf2 == Parallel(tf3, -tf2)
|
|
assert -tf1 - tf3 == Parallel(-tf1, -tf3)
|
|
assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3)
|
|
|
|
raises(ValueError, lambda: tf1 - Matrix([1, 2, 3]))
|
|
raises(ValueError, lambda: tf3 - tf4)
|
|
raises(ValueError, lambda: tf1 - (s - 1))
|
|
raises(ValueError, lambda: tf1 - 8)
|
|
raises(ValueError, lambda: (s + 5) - tf2)
|
|
raises(ValueError, lambda: (1 + p**4) - tf1)
|
|
|
|
|
|
def test_TransferFunction_multiplication_and_division():
|
|
G1 = TransferFunction(s + 3, -s**3 + 9, s)
|
|
G2 = TransferFunction(s + 1, s - 5, s)
|
|
G3 = TransferFunction(p, p**4 - 6, p)
|
|
G4 = TransferFunction(p + 4, p - 5, p)
|
|
G5 = TransferFunction(s + 6, s - 5, s)
|
|
G6 = TransferFunction(s + 3, s + 1, s)
|
|
G7 = TransferFunction(1, 1, s)
|
|
|
|
# multiplication
|
|
assert G1*G2 == Series(G1, G2)
|
|
assert -G1*G5 == Series(-G1, G5)
|
|
assert -G2*G5*-G6 == Series(-G2, G5, -G6)
|
|
assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6)
|
|
assert G3*G4 == Series(G3, G4)
|
|
assert (G1*G2)*-(G5*G6) == \
|
|
Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6))
|
|
assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6))
|
|
|
|
c = symbols("c", commutative=False)
|
|
raises(ValueError, lambda: G3 * Matrix([1, 2, 3]))
|
|
raises(ValueError, lambda: G1 * c)
|
|
raises(ValueError, lambda: G3 * G5)
|
|
raises(ValueError, lambda: G5 * (s - 1))
|
|
raises(ValueError, lambda: 9 * G5)
|
|
|
|
raises(ValueError, lambda: G3 / Matrix([1, 2, 3]))
|
|
raises(ValueError, lambda: G6 / 0)
|
|
raises(ValueError, lambda: G3 / G5)
|
|
raises(ValueError, lambda: G5 / 2)
|
|
raises(ValueError, lambda: G5 / s**2)
|
|
raises(ValueError, lambda: (s - 4*s**2) / G2)
|
|
raises(ValueError, lambda: 0 / G4)
|
|
raises(ValueError, lambda: G5 / G6)
|
|
raises(ValueError, lambda: -G3 /G4)
|
|
raises(ValueError, lambda: G7 / (1 + G6))
|
|
raises(ValueError, lambda: G7 / (G5 * G6))
|
|
raises(ValueError, lambda: G7 / (G7 + (G5 + G6)))
|
|
|
|
|
|
def test_TransferFunction_is_proper():
|
|
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
|
|
G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
|
G2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
|
G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
|
G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
|
assert G1.is_proper
|
|
assert G2.is_proper
|
|
assert G3.is_proper
|
|
assert not G4.is_proper
|
|
|
|
|
|
def test_TransferFunction_is_strictly_proper():
|
|
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
|
|
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
|
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
|
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
|
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
|
assert not tf1.is_strictly_proper
|
|
assert not tf2.is_strictly_proper
|
|
assert tf3.is_strictly_proper
|
|
assert not tf4.is_strictly_proper
|
|
|
|
|
|
def test_TransferFunction_is_biproper():
|
|
tau, omega_o, zeta = symbols('tau, omega_o, zeta')
|
|
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
|
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
|
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
|
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
|
assert tf1.is_biproper
|
|
assert tf2.is_biproper
|
|
assert not tf3.is_biproper
|
|
assert not tf4.is_biproper
|
|
|
|
|
|
def test_Series_construction():
|
|
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
|
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
|
|
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
|
|
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
|
inp = Function('X_d')(s)
|
|
out = Function('X')(s)
|
|
|
|
s0 = Series(tf, tf2)
|
|
assert s0.args == (tf, tf2)
|
|
assert s0.var == s
|
|
|
|
s1 = Series(Parallel(tf, -tf2), tf2)
|
|
assert s1.args == (Parallel(tf, -tf2), tf2)
|
|
assert s1.var == s
|
|
|
|
tf3_ = TransferFunction(inp, 1, s)
|
|
tf4_ = TransferFunction(-out, 1, s)
|
|
s2 = Series(tf, Parallel(tf3_, tf4_), tf2)
|
|
assert s2.args == (tf, Parallel(tf3_, tf4_), tf2)
|
|
|
|
s3 = Series(tf, tf2, tf4)
|
|
assert s3.args == (tf, tf2, tf4)
|
|
|
|
s4 = Series(tf3_, tf4_)
|
|
assert s4.args == (tf3_, tf4_)
|
|
assert s4.var == s
|
|
|
|
s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4)
|
|
assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4)
|
|
|
|
s7 = Series(tf, tf2)
|
|
assert s0 == s7
|
|
assert not s0 == s2
|
|
|
|
raises(ValueError, lambda: Series(tf, tf3))
|
|
raises(ValueError, lambda: Series(tf, tf2, tf3, tf4))
|
|
raises(ValueError, lambda: Series(-tf3, tf2))
|
|
raises(TypeError, lambda: Series(2, tf, tf4))
|
|
raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2))
|
|
raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4])))
|
|
|
|
|
|
def test_MIMOSeries_construction():
|
|
tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
|
tf_2 = TransferFunction(a2*p - s, a2*s + p, s)
|
|
tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
|
|
|
tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]])
|
|
tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]])
|
|
tfm_3 = TransferFunctionMatrix([[-tf_3]])
|
|
tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]])
|
|
tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p)
|
|
|
|
s8 = MIMOSeries(tfm_2, tfm_1)
|
|
assert s8.args == (tfm_2, tfm_1)
|
|
assert s8.var == s
|
|
assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1)
|
|
|
|
s9 = MIMOSeries(tfm_3, tfm_2, tfm_1)
|
|
assert s9.args == (tfm_3, tfm_2, tfm_1)
|
|
assert s9.var == s
|
|
assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1)
|
|
|
|
s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
|
|
assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
|
|
assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1)
|
|
|
|
# arg cannot be empty tuple.
|
|
raises(ValueError, lambda: MIMOSeries())
|
|
|
|
# arg cannot contain SISO as well as MIMO systems.
|
|
raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1))
|
|
|
|
# for all the adjacent transfer function matrices:
|
|
# no. of inputs of first TFM must be equal to the no. of outputs of the second TFM.
|
|
raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1))
|
|
|
|
# all the TFMs must use the same complex variable.
|
|
raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5))
|
|
|
|
# Number or expression not allowed in the arguments.
|
|
raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3))
|
|
raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3))
|
|
raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3))
|
|
|
|
|
|
def test_Series_functions():
|
|
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
|
tf2 = TransferFunction(k, 1, s)
|
|
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
|
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
|
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
|
|
|
assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \
|
|
== Series(tf1, Series(tf2, tf3))
|
|
assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3))
|
|
assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5)
|
|
assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5)
|
|
assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5)
|
|
assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5)
|
|
assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5)
|
|
assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5))
|
|
assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5)))
|
|
assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3)
|
|
assert -tf1*tf2 == Series(-tf1, tf2)
|
|
assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2))
|
|
raises(ValueError, lambda: tf1*tf2*tf4)
|
|
raises(ValueError, lambda: tf1*(tf2 - tf4))
|
|
raises(ValueError, lambda: tf3*Matrix([1, 2, 3]))
|
|
|
|
# evaluate=True -> doit()
|
|
assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \
|
|
TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
|
|
assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \
|
|
TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s)
|
|
assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \
|
|
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit()
|
|
|
|
assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \
|
|
TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert Series(-tf1, -tf2, -tf3).doit() == \
|
|
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert -Series(tf1, tf2, tf3).doit() == \
|
|
TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \
|
|
TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
|
|
assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
|
|
assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \
|
|
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
|
|
S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3))
|
|
assert S1.is_proper
|
|
assert not S1.is_strictly_proper
|
|
assert S1.is_biproper
|
|
|
|
S2 = Series(tf1, tf2, tf3)
|
|
assert S2.is_proper
|
|
assert S2.is_strictly_proper
|
|
assert not S2.is_biproper
|
|
|
|
S3 = Series(tf1, -tf2, Parallel(tf1, -tf3))
|
|
assert S3.is_proper
|
|
assert S3.is_strictly_proper
|
|
assert not S3.is_biproper
|
|
|
|
|
|
def test_MIMOSeries_functions():
|
|
tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]])
|
|
tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]])
|
|
tfm3 = TransferFunctionMatrix([[-TF1]])
|
|
tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]])
|
|
tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]])
|
|
tfm6 = TransferFunctionMatrix([[-TF3], [TF1]])
|
|
tfm7 = TransferFunctionMatrix([[TF1], [-TF2]])
|
|
|
|
assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6)
|
|
assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6)
|
|
assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7)
|
|
assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5)
|
|
assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4))
|
|
|
|
raises(ValueError, lambda: tfm1*tfm2 + TF1)
|
|
raises(TypeError, lambda: tfm1*tfm2 + a0)
|
|
raises(TypeError, lambda: tfm4*tfm6 - (s - 1))
|
|
raises(TypeError, lambda: tfm4*-tfm6 - 8)
|
|
raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2)
|
|
|
|
# Shape criteria.
|
|
|
|
raises(TypeError, lambda: -tfm1*tfm2 + tfm4)
|
|
raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5)
|
|
raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5)
|
|
|
|
assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1)
|
|
assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1)
|
|
|
|
# Multiplication of a Series object with a SISO TF not allowed.
|
|
|
|
raises(ValueError, lambda: tfm4*tfm5*TF1)
|
|
raises(TypeError, lambda: tfm4*tfm5*a1)
|
|
raises(TypeError, lambda: tfm4*-tfm5*(s - 2))
|
|
raises(TypeError, lambda: tfm5*tfm4*9)
|
|
raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4)
|
|
|
|
# Transfer function matrix in the arguments.
|
|
assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit()
|
|
== TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2,
|
|
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),),
|
|
(TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
|
|
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),))))
|
|
|
|
# doit() should not cancel poles and zeros.
|
|
mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]])
|
|
mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]])
|
|
tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s)
|
|
assert (MIMOSeries(tm_2, tm_1).doit()
|
|
== TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),)))
|
|
assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),))
|
|
|
|
# calling doit() will expand the internal Series and Parallel objects.
|
|
assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True)
|
|
== MIMOSeries(-tfm3, -tfm2, tfm1).doit()
|
|
== TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2,
|
|
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),),
|
|
(TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
|
|
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),))))
|
|
assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True)
|
|
== MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit()
|
|
== TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \
|
|
k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \
|
|
TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix))
|
|
|
|
|
|
def test_Parallel_construction():
|
|
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
|
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
|
|
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
|
|
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
|
inp = Function('X_d')(s)
|
|
out = Function('X')(s)
|
|
|
|
p0 = Parallel(tf, tf2)
|
|
assert p0.args == (tf, tf2)
|
|
assert p0.var == s
|
|
|
|
p1 = Parallel(Series(tf, -tf2), tf2)
|
|
assert p1.args == (Series(tf, -tf2), tf2)
|
|
assert p1.var == s
|
|
|
|
tf3_ = TransferFunction(inp, 1, s)
|
|
tf4_ = TransferFunction(-out, 1, s)
|
|
p2 = Parallel(tf, Series(tf3_, -tf4_), tf2)
|
|
assert p2.args == (tf, Series(tf3_, -tf4_), tf2)
|
|
|
|
p3 = Parallel(tf, tf2, tf4)
|
|
assert p3.args == (tf, tf2, tf4)
|
|
|
|
p4 = Parallel(tf3_, tf4_)
|
|
assert p4.args == (tf3_, tf4_)
|
|
assert p4.var == s
|
|
|
|
p5 = Parallel(tf, tf2)
|
|
assert p0 == p5
|
|
assert not p0 == p1
|
|
|
|
p6 = Parallel(tf2, tf4, Series(tf2, -tf4))
|
|
assert p6.args == (tf2, tf4, Series(tf2, -tf4))
|
|
|
|
p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4)
|
|
assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4)
|
|
|
|
raises(ValueError, lambda: Parallel(tf, tf3))
|
|
raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4))
|
|
raises(ValueError, lambda: Parallel(-tf3, tf4))
|
|
raises(TypeError, lambda: Parallel(2, tf, tf4))
|
|
raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2))
|
|
raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4])))
|
|
|
|
|
|
def test_MIMOParallel_construction():
|
|
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
|
|
tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]])
|
|
tfm3 = TransferFunctionMatrix([[TF1]])
|
|
tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]])
|
|
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]])
|
|
tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]])
|
|
tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p)
|
|
|
|
p8 = MIMOParallel(tfm1, tfm2)
|
|
assert p8.args == (tfm1, tfm2)
|
|
assert p8.var == s
|
|
assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1)
|
|
|
|
p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2)
|
|
assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2)
|
|
assert p9.var == s
|
|
assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1)
|
|
|
|
p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2)
|
|
assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2)
|
|
assert p10.var == s
|
|
assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1)
|
|
|
|
p11 = MIMOParallel(tfm2, tfm1, tfm4)
|
|
assert p11.args == (tfm2, tfm1, tfm4)
|
|
assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1)
|
|
|
|
p12 = MIMOParallel(tfm6, tfm5)
|
|
assert p12.args == (tfm6, tfm5)
|
|
assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2)
|
|
|
|
p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
|
|
assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
|
|
assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1)
|
|
|
|
# arg cannot be empty tuple.
|
|
raises(TypeError, lambda: MIMOParallel(()))
|
|
|
|
# arg cannot contain SISO as well as MIMO systems.
|
|
raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1))
|
|
|
|
# all TFMs must have same shapes.
|
|
raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4))
|
|
|
|
# all TFMs must be using the same complex variable.
|
|
raises(ValueError, lambda: MIMOParallel(tfm3, tfm7))
|
|
|
|
# Number or expression not allowed in the arguments.
|
|
raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4))
|
|
raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2))
|
|
|
|
|
|
def test_Parallel_functions():
|
|
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
|
tf2 = TransferFunction(k, 1, s)
|
|
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
|
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
|
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
|
|
|
assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3)
|
|
assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5)
|
|
assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5)
|
|
assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3))
|
|
assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3))
|
|
assert -tf1 - tf2 == Parallel(-tf1, -tf2)
|
|
assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2))
|
|
assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1)
|
|
assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5)
|
|
assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5)
|
|
assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5)
|
|
assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3)
|
|
assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5))
|
|
raises(ValueError, lambda: tf1 + tf2 + tf4)
|
|
raises(ValueError, lambda: tf1 - tf2*tf4)
|
|
raises(ValueError, lambda: tf3 + Matrix([1, 2, 3]))
|
|
|
|
# evaluate=True -> doit()
|
|
assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \
|
|
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
|
|
assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \
|
|
Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \
|
|
(-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \
|
|
2*s*wn*zeta + wn**2)**2, s)
|
|
assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \
|
|
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \
|
|
, (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit()
|
|
|
|
assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \
|
|
TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert Parallel(-tf1, -tf2, -tf3).doit() == \
|
|
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \
|
|
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert -Parallel(tf1, tf2, tf3).doit() == \
|
|
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \
|
|
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \
|
|
TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \
|
|
+ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
|
|
assert Parallel(tf1, tf2).rewrite(TransferFunction) == \
|
|
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
|
|
assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \
|
|
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \
|
|
wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
|
|
assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3)
|
|
|
|
P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
|
|
assert P1.is_proper
|
|
assert not P1.is_strictly_proper
|
|
assert P1.is_biproper
|
|
|
|
P2 = Parallel(tf1, -tf2, -tf3)
|
|
assert P2.is_proper
|
|
assert not P2.is_strictly_proper
|
|
assert P2.is_biproper
|
|
|
|
P3 = Parallel(tf1, -tf2, Series(tf1, tf3))
|
|
assert P3.is_proper
|
|
assert not P3.is_strictly_proper
|
|
assert P3.is_biproper
|
|
|
|
|
|
def test_MIMOParallel_functions():
|
|
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
|
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
|
|
|
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
|
|
tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]])
|
|
tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]])
|
|
tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]])
|
|
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]])
|
|
tfm6 = TransferFunctionMatrix([[-TF2]])
|
|
tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]])
|
|
|
|
assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3)
|
|
assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3)
|
|
assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1))
|
|
assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1))
|
|
assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2)
|
|
assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1)
|
|
raises(ValueError, lambda: tfm1 + tfm2 + TF2)
|
|
raises(TypeError, lambda: tfm1 - tfm2 - a1)
|
|
raises(TypeError, lambda: tfm2 - tfm3 - (s - 1))
|
|
raises(TypeError, lambda: -tfm3 - tfm2 - 9)
|
|
raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2)
|
|
# All TFMs must use the same complex var. tfm7 uses 'p'.
|
|
raises(ValueError, lambda: tfm3 - tfm2 - tfm7)
|
|
raises(ValueError, lambda: tfm2 - tfm1 + tfm7)
|
|
# (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape.
|
|
raises(TypeError, lambda: tfm1 + tfm2 + tfm4)
|
|
raises(TypeError, lambda: (tfm1 - tfm2) - tfm4)
|
|
|
|
assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2))
|
|
assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3))
|
|
assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3))
|
|
raises(ValueError, lambda: (tfm4 + tfm5)*TF1)
|
|
raises(TypeError, lambda: (tfm2 - tfm3)*a2)
|
|
raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6))
|
|
raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0)
|
|
raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3))
|
|
|
|
# (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape.
|
|
raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5)
|
|
# (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape.
|
|
raises(ValueError, lambda: (tfm1 - tfm2)*tfm5)
|
|
|
|
# TFM in the arguments.
|
|
assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit()
|
|
== MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix)
|
|
== TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \
|
|
(TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \
|
|
(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),))))
|
|
|
|
|
|
def test_Feedback_construction():
|
|
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
|
tf2 = TransferFunction(k, 1, s)
|
|
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
|
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
|
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
|
tf6 = TransferFunction(s - p, p + s, p)
|
|
|
|
f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3)
|
|
assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1)
|
|
assert f1.sys1 == TransferFunction(1, 1, s)
|
|
assert f1.sys2 == Series(tf1, tf2, tf3)
|
|
assert f1.var == s
|
|
|
|
f2 = Feedback(tf1, tf2*tf3)
|
|
assert f2.args == (tf1, Series(tf2, tf3), -1)
|
|
assert f2.sys1 == tf1
|
|
assert f2.sys2 == Series(tf2, tf3)
|
|
assert f2.var == s
|
|
|
|
f3 = Feedback(tf1*tf2, tf5)
|
|
assert f3.args == (Series(tf1, tf2), tf5, -1)
|
|
assert f3.sys1 == Series(tf1, tf2)
|
|
|
|
f4 = Feedback(tf4, tf6)
|
|
assert f4.args == (tf4, tf6, -1)
|
|
assert f4.sys1 == tf4
|
|
assert f4.var == p
|
|
|
|
f5 = Feedback(tf5, TransferFunction(1, 1, s))
|
|
assert f5.args == (tf5, TransferFunction(1, 1, s), -1)
|
|
assert f5.var == s
|
|
assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf.
|
|
|
|
f6 = Feedback(TransferFunction(1, 1, p), tf4)
|
|
assert f6.args == (TransferFunction(1, 1, p), tf4, -1)
|
|
assert f6.var == p
|
|
|
|
f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p))
|
|
assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1)
|
|
assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6))
|
|
|
|
# denominator can't be a Parallel instance
|
|
raises(TypeError, lambda: Feedback(tf1, tf2 + tf3))
|
|
raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3])))
|
|
raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1))
|
|
raises(TypeError, lambda: Feedback(1, 1))
|
|
# raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s)))
|
|
raises(ValueError, lambda: Feedback(tf2, tf4*tf5))
|
|
raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1
|
|
raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero
|
|
raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var`
|
|
|
|
|
|
def test_Feedback_functions():
|
|
tf = TransferFunction(1, 1, s)
|
|
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
|
tf2 = TransferFunction(k, 1, s)
|
|
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
|
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
|
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
|
tf6 = TransferFunction(s - p, p + s, p)
|
|
|
|
assert tf / (tf + tf1) == Feedback(tf, tf1)
|
|
assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3)
|
|
assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3)
|
|
assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf)
|
|
assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5)
|
|
assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5))
|
|
assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6)
|
|
assert tf5 / (tf + tf5) == Feedback(tf5, tf)
|
|
|
|
raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3))
|
|
raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5)
|
|
raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4))
|
|
|
|
assert Feedback(tf, tf1*tf2*tf3).doit() == \
|
|
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \
|
|
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert Feedback(tf, tf1*tf2*tf3).sensitivity == \
|
|
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
|
assert Feedback(tf1, tf2*tf3).doit() == \
|
|
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \
|
|
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert Feedback(tf1, tf2*tf3).sensitivity == \
|
|
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
|
assert Feedback(tf1*tf2, tf5).doit() == \
|
|
TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
|
|
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert Feedback(tf1*tf2, tf5, 1).sensitivity == \
|
|
1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
|
assert Feedback(tf4, tf6).doit() == \
|
|
TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
|
|
assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \
|
|
TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
|
|
assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s)
|
|
|
|
assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \
|
|
TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
|
|
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
|
assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \
|
|
TransferFunction(p, a0*p + p + p**a1 - s, p)
|
|
|
|
|
|
def test_MIMOFeedback_construction():
|
|
tf1 = TransferFunction(1, s, s)
|
|
tf2 = TransferFunction(s, s**3 - 1, s)
|
|
tf3 = TransferFunction(s, s + 1, s)
|
|
tf4 = TransferFunction(s, s**2 + 1, s)
|
|
|
|
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
|
|
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
|
|
tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]])
|
|
|
|
f1 = MIMOFeedback(tfm_1, tfm_2)
|
|
assert f1.args == (tfm_1, tfm_2, -1)
|
|
assert f1.sys1 == tfm_1
|
|
assert f1.sys2 == tfm_2
|
|
assert f1.var == s
|
|
assert f1.sign == -1
|
|
assert -(-f1) == f1
|
|
|
|
f2 = MIMOFeedback(tfm_2, tfm_1, 1)
|
|
assert f2.args == (tfm_2, tfm_1, 1)
|
|
assert f2.sys1 == tfm_2
|
|
assert f2.sys2 == tfm_1
|
|
assert f2.var == s
|
|
assert f2.sign == 1
|
|
|
|
f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2))
|
|
assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1)
|
|
assert f3.sys1 == tfm_1
|
|
assert f3.sys2 == MIMOSeries(tfm_3, tfm_2)
|
|
assert f3.var == s
|
|
assert f3.sign == -1
|
|
|
|
mat = Matrix([[1, 1/s], [0, 1]])
|
|
sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s)
|
|
f4 = MIMOFeedback(sys1, controller)
|
|
assert f4.args == (sys1, controller, -1)
|
|
assert f4.sys1 == f4.sys2 == sys1
|
|
|
|
|
|
def test_MIMOFeedback_errors():
|
|
tf1 = TransferFunction(1, s, s)
|
|
tf2 = TransferFunction(s, s**3 - 1, s)
|
|
tf3 = TransferFunction(s, s - 1, s)
|
|
tf4 = TransferFunction(s, s**2 + 1, s)
|
|
tf5 = TransferFunction(1, 1, s)
|
|
tf6 = TransferFunction(-1, s - 1, s)
|
|
|
|
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
|
|
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
|
|
tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
|
|
tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]])
|
|
tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]])
|
|
# tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I
|
|
tfm_6 = TransferFunctionMatrix([[-tf3]])
|
|
tfm_7 = TransferFunctionMatrix([[tf3, tf4]])
|
|
|
|
# Unsupported Types
|
|
raises(TypeError, lambda: MIMOFeedback(tf1, tf2))
|
|
raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3))
|
|
# Shape Errors
|
|
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1))
|
|
raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7))
|
|
# sign not 1/-1
|
|
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2))
|
|
# Non-Invertible Systems
|
|
raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1))
|
|
raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5))
|
|
raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1))
|
|
# Variable not same in both the systems
|
|
tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p)
|
|
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1))
|
|
|
|
|
|
def test_MIMOFeedback_functions():
|
|
tf1 = TransferFunction(1, s, s)
|
|
tf2 = TransferFunction(s, s - 1, s)
|
|
tf3 = TransferFunction(1, 1, s)
|
|
tf4 = TransferFunction(-1, s - 1, s)
|
|
|
|
tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
|
|
tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]])
|
|
tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]])
|
|
tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]])
|
|
|
|
# sensitivity, doit(), rewrite()
|
|
F_1 = MIMOFeedback(tfm_2, tfm_3)
|
|
F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1)
|
|
|
|
assert F_1.sensitivity == Matrix([[S.Half, 0], [0, S.Half]])
|
|
assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1),
|
|
(2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]])
|
|
|
|
assert F_1.doit() == \
|
|
TransferFunctionMatrix(((TransferFunction(1, 2*s, s),
|
|
TransferFunction(1, 2, s)), (TransferFunction(1, 2, s),
|
|
TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix)
|
|
assert F_2.doit(cancel=False, expand=True) == \
|
|
TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s),
|
|
TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
|
assert F_2.doit(cancel=False) == \
|
|
TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \
|
|
(-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
|
|
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
|
assert F_2.doit() == \
|
|
TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s),
|
|
TransferFunction(-2*s**3*(s - 1), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s))))
|
|
assert F_2.doit(expand=True) == \
|
|
TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
|
|
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
|
|
|
assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating.
|
|
|
|
|
|
def test_TransferFunctionMatrix_construction():
|
|
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
|
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
|
|
|
tfm3_ = TransferFunctionMatrix([[-TF3]])
|
|
assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1)
|
|
assert tfm3_.args == Tuple(Tuple(Tuple(-TF3)))
|
|
assert tfm3_.var == s
|
|
|
|
tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]])
|
|
assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2)
|
|
assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5)))
|
|
assert tfm5.var == s
|
|
|
|
tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]])
|
|
assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2)
|
|
assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2)))
|
|
assert tfm7.var == s
|
|
|
|
# all transfer functions will use the same complex variable. tf4 uses 'p'.
|
|
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]]))
|
|
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]]))
|
|
|
|
# length of all the lists in the TFM should be equal.
|
|
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]]))
|
|
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]]))
|
|
|
|
# lists should only support transfer functions in them.
|
|
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]]))
|
|
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]]))
|
|
|
|
# `arg` should strictly be nested list of TransferFunction
|
|
raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5]))
|
|
raises(ValueError, lambda: TransferFunctionMatrix([TF1]))
|
|
|
|
def test_TransferFunctionMatrix_functions():
|
|
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
|
|
|
# Classmethod (from_matrix)
|
|
|
|
mat_1 = ImmutableMatrix([
|
|
[s*(s + 1)*(s - 3)/(s**4 + 1), 2],
|
|
[p, p*(s + 1)/(s*(s**1 + 1))]
|
|
])
|
|
mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]])
|
|
mat_3 = ImmutableMatrix([[1, 2], [3, 4]])
|
|
assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \
|
|
TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)],
|
|
[TransferFunction(p, 1, s), TransferFunction(p, s, s)]])
|
|
assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \
|
|
TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]])
|
|
assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \
|
|
TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)],
|
|
[TransferFunction(3, 1, p), TransferFunction(4, 1, p)]])
|
|
|
|
# Negating a TFM
|
|
|
|
tfm1 = TransferFunctionMatrix([[TF1], [TF2]])
|
|
assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]])
|
|
|
|
tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]])
|
|
assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]])
|
|
|
|
# subs()
|
|
|
|
H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s)
|
|
H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]])
|
|
assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
|
|
assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
|
|
assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var`
|
|
assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]])
|
|
assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]])
|
|
assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]])
|
|
assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]])
|
|
|
|
# transpose()
|
|
|
|
assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]])
|
|
assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]])
|
|
assert H_1.transpose().transpose() == H_1
|
|
assert H_2.transpose().transpose() == H_2
|
|
|
|
# elem_poles()
|
|
|
|
assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []],
|
|
[[], [0]]]
|
|
assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]]
|
|
assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]],
|
|
[[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]]
|
|
|
|
# elem_zeros()
|
|
|
|
assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]]
|
|
assert H_2.elem_zeros() == [[[0], [0]]]
|
|
assert tfm2.elem_zeros() == [[[], [], [a2*p]],
|
|
[[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]]
|
|
|
|
# doit()
|
|
|
|
H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]])
|
|
H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]])
|
|
|
|
assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]])
|
|
assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]])
|
|
|
|
# _flat()
|
|
|
|
assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)]
|
|
assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)]
|
|
assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]
|
|
assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]
|
|
|
|
# evalf()
|
|
|
|
assert H_1.evalf() == \
|
|
TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s))))
|
|
assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \
|
|
TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s),
|
|
TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),))
|
|
|
|
# simplify()
|
|
|
|
H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s),
|
|
TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]])
|
|
|
|
assert H_5.simplify() == simplify(H_5) == \
|
|
TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),))
|
|
|
|
# expand()
|
|
|
|
assert (H_1.expand()
|
|
== TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)),
|
|
(TransferFunction(p, 1, s), TransferFunction(p, s, s)))))
|
|
assert H_5.expand() == \
|
|
TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),))
|
|
|
|
def test_TransferFunction_bilinear():
|
|
# simple transfer function, e.g. ohms law
|
|
tf = TransferFunction(1, a*s+b, s)
|
|
numZ, denZ = bilinear(tf, T)
|
|
# discretized transfer function with coefs from tf.bilinear()
|
|
tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s)
|
|
# corresponding tf with manually calculated coefs
|
|
tf_test_manual = TransferFunction(s*T+T, s*(T*b+2*a)+T*b-2*a, s)
|
|
|
|
assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
|
|
|
|
def test_TransferFunction_backward_diff():
|
|
# simple transfer function, e.g. ohms law
|
|
tf = TransferFunction(1, a*s+b, s)
|
|
numZ, denZ = backward_diff(tf, T)
|
|
# discretized transfer function with coefs from tf.bilinear()
|
|
tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s)
|
|
# corresponding tf with manually calculated coefs
|
|
tf_test_manual = TransferFunction(s*T, s*(T*b+a)-a, s)
|
|
|
|
assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
|