ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/tests/test_identitysearch.py

493 lines
17 KiB
Python

from sympy.external import import_module
from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.gate import (X, Y, Z, H, CNOT,
IdentityGate, CGate, PhaseGate, TGate)
from sympy.physics.quantum.identitysearch import (generate_gate_rules,
generate_equivalent_ids, GateIdentity, bfs_identity_search,
is_scalar_sparse_matrix,
is_scalar_nonsparse_matrix, is_degenerate, is_reducible)
from sympy.testing.pytest import skip
def create_gate_sequence(qubit=0):
gates = (X(qubit), Y(qubit), Z(qubit), H(qubit))
return gates
def test_generate_gate_rules_1():
# Test with tuples
(x, y, z, h) = create_gate_sequence()
ph = PhaseGate(0)
cgate_t = CGate(0, TGate(1))
assert generate_gate_rules((x,)) == {((x,), ())}
gate_rules = {((x, x), ()),
((x,), (x,))}
assert generate_gate_rules((x, x)) == gate_rules
gate_rules = {((x, y, x), ()),
((y, x, x), ()),
((x, x, y), ()),
((y, x), (x,)),
((x, y), (x,)),
((y,), (x, x))}
assert generate_gate_rules((x, y, x)) == gate_rules
gate_rules = {((x, y, z), ()), ((y, z, x), ()), ((z, x, y), ()),
((), (x, z, y)), ((), (y, x, z)), ((), (z, y, x)),
((x,), (z, y)), ((y, z), (x,)), ((y,), (x, z)),
((z, x), (y,)), ((z,), (y, x)), ((x, y), (z,))}
actual = generate_gate_rules((x, y, z))
assert actual == gate_rules
gate_rules = {
((), (h, z, y, x)), ((), (x, h, z, y)), ((), (y, x, h, z)),
((), (z, y, x, h)), ((h,), (z, y, x)), ((x,), (h, z, y)),
((y,), (x, h, z)), ((z,), (y, x, h)), ((h, x), (z, y)),
((x, y), (h, z)), ((y, z), (x, h)), ((z, h), (y, x)),
((h, x, y), (z,)), ((x, y, z), (h,)), ((y, z, h), (x,)),
((z, h, x), (y,)), ((h, x, y, z), ()), ((x, y, z, h), ()),
((y, z, h, x), ()), ((z, h, x, y), ())}
actual = generate_gate_rules((x, y, z, h))
assert actual == gate_rules
gate_rules = {((), (cgate_t**(-1), ph**(-1), x)),
((), (ph**(-1), x, cgate_t**(-1))),
((), (x, cgate_t**(-1), ph**(-1))),
((cgate_t,), (ph**(-1), x)),
((ph,), (x, cgate_t**(-1))),
((x,), (cgate_t**(-1), ph**(-1))),
((cgate_t, x), (ph**(-1),)),
((ph, cgate_t), (x,)),
((x, ph), (cgate_t**(-1),)),
((cgate_t, x, ph), ()),
((ph, cgate_t, x), ()),
((x, ph, cgate_t), ())}
actual = generate_gate_rules((x, ph, cgate_t))
assert actual == gate_rules
gate_rules = {(Integer(1), cgate_t**(-1)*ph**(-1)*x),
(Integer(1), ph**(-1)*x*cgate_t**(-1)),
(Integer(1), x*cgate_t**(-1)*ph**(-1)),
(cgate_t, ph**(-1)*x),
(ph, x*cgate_t**(-1)),
(x, cgate_t**(-1)*ph**(-1)),
(cgate_t*x, ph**(-1)),
(ph*cgate_t, x),
(x*ph, cgate_t**(-1)),
(cgate_t*x*ph, Integer(1)),
(ph*cgate_t*x, Integer(1)),
(x*ph*cgate_t, Integer(1))}
actual = generate_gate_rules((x, ph, cgate_t), return_as_muls=True)
assert actual == gate_rules
def test_generate_gate_rules_2():
# Test with Muls
(x, y, z, h) = create_gate_sequence()
ph = PhaseGate(0)
cgate_t = CGate(0, TGate(1))
# Note: 1 (type int) is not the same as 1 (type One)
expected = {(x, Integer(1))}
assert generate_gate_rules((x,), return_as_muls=True) == expected
expected = {(Integer(1), Integer(1))}
assert generate_gate_rules(x*x, return_as_muls=True) == expected
expected = {((), ())}
assert generate_gate_rules(x*x, return_as_muls=False) == expected
gate_rules = {(x*y*x, Integer(1)),
(y, Integer(1)),
(y*x, x),
(x*y, x)}
assert generate_gate_rules(x*y*x, return_as_muls=True) == gate_rules
gate_rules = {(x*y*z, Integer(1)),
(y*z*x, Integer(1)),
(z*x*y, Integer(1)),
(Integer(1), x*z*y),
(Integer(1), y*x*z),
(Integer(1), z*y*x),
(x, z*y),
(y*z, x),
(y, x*z),
(z*x, y),
(z, y*x),
(x*y, z)}
actual = generate_gate_rules(x*y*z, return_as_muls=True)
assert actual == gate_rules
gate_rules = {(Integer(1), h*z*y*x),
(Integer(1), x*h*z*y),
(Integer(1), y*x*h*z),
(Integer(1), z*y*x*h),
(h, z*y*x), (x, h*z*y),
(y, x*h*z), (z, y*x*h),
(h*x, z*y), (z*h, y*x),
(x*y, h*z), (y*z, x*h),
(h*x*y, z), (x*y*z, h),
(y*z*h, x), (z*h*x, y),
(h*x*y*z, Integer(1)),
(x*y*z*h, Integer(1)),
(y*z*h*x, Integer(1)),
(z*h*x*y, Integer(1))}
actual = generate_gate_rules(x*y*z*h, return_as_muls=True)
assert actual == gate_rules
gate_rules = {(Integer(1), cgate_t**(-1)*ph**(-1)*x),
(Integer(1), ph**(-1)*x*cgate_t**(-1)),
(Integer(1), x*cgate_t**(-1)*ph**(-1)),
(cgate_t, ph**(-1)*x),
(ph, x*cgate_t**(-1)),
(x, cgate_t**(-1)*ph**(-1)),
(cgate_t*x, ph**(-1)),
(ph*cgate_t, x),
(x*ph, cgate_t**(-1)),
(cgate_t*x*ph, Integer(1)),
(ph*cgate_t*x, Integer(1)),
(x*ph*cgate_t, Integer(1))}
actual = generate_gate_rules(x*ph*cgate_t, return_as_muls=True)
assert actual == gate_rules
gate_rules = {((), (cgate_t**(-1), ph**(-1), x)),
((), (ph**(-1), x, cgate_t**(-1))),
((), (x, cgate_t**(-1), ph**(-1))),
((cgate_t,), (ph**(-1), x)),
((ph,), (x, cgate_t**(-1))),
((x,), (cgate_t**(-1), ph**(-1))),
((cgate_t, x), (ph**(-1),)),
((ph, cgate_t), (x,)),
((x, ph), (cgate_t**(-1),)),
((cgate_t, x, ph), ()),
((ph, cgate_t, x), ()),
((x, ph, cgate_t), ())}
actual = generate_gate_rules(x*ph*cgate_t)
assert actual == gate_rules
def test_generate_equivalent_ids_1():
# Test with tuples
(x, y, z, h) = create_gate_sequence()
assert generate_equivalent_ids((x,)) == {(x,)}
assert generate_equivalent_ids((x, x)) == {(x, x)}
assert generate_equivalent_ids((x, y)) == {(x, y), (y, x)}
gate_seq = (x, y, z)
gate_ids = {(x, y, z), (y, z, x), (z, x, y), (z, y, x),
(y, x, z), (x, z, y)}
assert generate_equivalent_ids(gate_seq) == gate_ids
gate_ids = {Mul(x, y, z), Mul(y, z, x), Mul(z, x, y),
Mul(z, y, x), Mul(y, x, z), Mul(x, z, y)}
assert generate_equivalent_ids(gate_seq, return_as_muls=True) == gate_ids
gate_seq = (x, y, z, h)
gate_ids = {(x, y, z, h), (y, z, h, x),
(h, x, y, z), (h, z, y, x),
(z, y, x, h), (y, x, h, z),
(z, h, x, y), (x, h, z, y)}
assert generate_equivalent_ids(gate_seq) == gate_ids
gate_seq = (x, y, x, y)
gate_ids = {(x, y, x, y), (y, x, y, x)}
assert generate_equivalent_ids(gate_seq) == gate_ids
cgate_y = CGate((1,), y)
gate_seq = (y, cgate_y, y, cgate_y)
gate_ids = {(y, cgate_y, y, cgate_y), (cgate_y, y, cgate_y, y)}
assert generate_equivalent_ids(gate_seq) == gate_ids
cnot = CNOT(1, 0)
cgate_z = CGate((0,), Z(1))
gate_seq = (cnot, h, cgate_z, h)
gate_ids = {(cnot, h, cgate_z, h), (h, cgate_z, h, cnot),
(h, cnot, h, cgate_z), (cgate_z, h, cnot, h)}
assert generate_equivalent_ids(gate_seq) == gate_ids
def test_generate_equivalent_ids_2():
# Test with Muls
(x, y, z, h) = create_gate_sequence()
assert generate_equivalent_ids((x,), return_as_muls=True) == {x}
gate_ids = {Integer(1)}
assert generate_equivalent_ids(x*x, return_as_muls=True) == gate_ids
gate_ids = {x*y, y*x}
assert generate_equivalent_ids(x*y, return_as_muls=True) == gate_ids
gate_ids = {(x, y), (y, x)}
assert generate_equivalent_ids(x*y) == gate_ids
circuit = Mul(*(x, y, z))
gate_ids = {x*y*z, y*z*x, z*x*y, z*y*x,
y*x*z, x*z*y}
assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids
circuit = Mul(*(x, y, z, h))
gate_ids = {x*y*z*h, y*z*h*x,
h*x*y*z, h*z*y*x,
z*y*x*h, y*x*h*z,
z*h*x*y, x*h*z*y}
assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids
circuit = Mul(*(x, y, x, y))
gate_ids = {x*y*x*y, y*x*y*x}
assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids
cgate_y = CGate((1,), y)
circuit = Mul(*(y, cgate_y, y, cgate_y))
gate_ids = {y*cgate_y*y*cgate_y, cgate_y*y*cgate_y*y}
assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids
cnot = CNOT(1, 0)
cgate_z = CGate((0,), Z(1))
circuit = Mul(*(cnot, h, cgate_z, h))
gate_ids = {cnot*h*cgate_z*h, h*cgate_z*h*cnot,
h*cnot*h*cgate_z, cgate_z*h*cnot*h}
assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids
def test_is_scalar_nonsparse_matrix():
numqubits = 2
id_only = False
id_gate = (IdentityGate(1),)
actual = is_scalar_nonsparse_matrix(id_gate, numqubits, id_only)
assert actual is True
x0 = X(0)
xx_circuit = (x0, x0)
actual = is_scalar_nonsparse_matrix(xx_circuit, numqubits, id_only)
assert actual is True
x1 = X(1)
y1 = Y(1)
xy_circuit = (x1, y1)
actual = is_scalar_nonsparse_matrix(xy_circuit, numqubits, id_only)
assert actual is False
z1 = Z(1)
xyz_circuit = (x1, y1, z1)
actual = is_scalar_nonsparse_matrix(xyz_circuit, numqubits, id_only)
assert actual is True
cnot = CNOT(1, 0)
cnot_circuit = (cnot, cnot)
actual = is_scalar_nonsparse_matrix(cnot_circuit, numqubits, id_only)
assert actual is True
h = H(0)
hh_circuit = (h, h)
actual = is_scalar_nonsparse_matrix(hh_circuit, numqubits, id_only)
assert actual is True
h1 = H(1)
xhzh_circuit = (x1, h1, z1, h1)
actual = is_scalar_nonsparse_matrix(xhzh_circuit, numqubits, id_only)
assert actual is True
id_only = True
actual = is_scalar_nonsparse_matrix(xhzh_circuit, numqubits, id_only)
assert actual is True
actual = is_scalar_nonsparse_matrix(xyz_circuit, numqubits, id_only)
assert actual is False
actual = is_scalar_nonsparse_matrix(cnot_circuit, numqubits, id_only)
assert actual is True
actual = is_scalar_nonsparse_matrix(hh_circuit, numqubits, id_only)
assert actual is True
def test_is_scalar_sparse_matrix():
np = import_module('numpy')
if not np:
skip("numpy not installed.")
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
if not scipy:
skip("scipy not installed.")
numqubits = 2
id_only = False
id_gate = (IdentityGate(1),)
assert is_scalar_sparse_matrix(id_gate, numqubits, id_only) is True
x0 = X(0)
xx_circuit = (x0, x0)
assert is_scalar_sparse_matrix(xx_circuit, numqubits, id_only) is True
x1 = X(1)
y1 = Y(1)
xy_circuit = (x1, y1)
assert is_scalar_sparse_matrix(xy_circuit, numqubits, id_only) is False
z1 = Z(1)
xyz_circuit = (x1, y1, z1)
assert is_scalar_sparse_matrix(xyz_circuit, numqubits, id_only) is True
cnot = CNOT(1, 0)
cnot_circuit = (cnot, cnot)
assert is_scalar_sparse_matrix(cnot_circuit, numqubits, id_only) is True
h = H(0)
hh_circuit = (h, h)
assert is_scalar_sparse_matrix(hh_circuit, numqubits, id_only) is True
# NOTE:
# The elements of the sparse matrix for the following circuit
# is actually 1.0000000000000002+0.0j.
h1 = H(1)
xhzh_circuit = (x1, h1, z1, h1)
assert is_scalar_sparse_matrix(xhzh_circuit, numqubits, id_only) is True
id_only = True
assert is_scalar_sparse_matrix(xhzh_circuit, numqubits, id_only) is True
assert is_scalar_sparse_matrix(xyz_circuit, numqubits, id_only) is False
assert is_scalar_sparse_matrix(cnot_circuit, numqubits, id_only) is True
assert is_scalar_sparse_matrix(hh_circuit, numqubits, id_only) is True
def test_is_degenerate():
(x, y, z, h) = create_gate_sequence()
gate_id = GateIdentity(x, y, z)
ids = {gate_id}
another_id = (z, y, x)
assert is_degenerate(ids, another_id) is True
def test_is_reducible():
nqubits = 2
(x, y, z, h) = create_gate_sequence()
circuit = (x, y, y)
assert is_reducible(circuit, nqubits, 1, 3) is True
circuit = (x, y, x)
assert is_reducible(circuit, nqubits, 1, 3) is False
circuit = (x, y, y, x)
assert is_reducible(circuit, nqubits, 0, 4) is True
circuit = (x, y, y, x)
assert is_reducible(circuit, nqubits, 1, 3) is True
circuit = (x, y, z, y, y)
assert is_reducible(circuit, nqubits, 1, 5) is True
def test_bfs_identity_search():
assert bfs_identity_search([], 1) == set()
(x, y, z, h) = create_gate_sequence()
gate_list = [x]
id_set = {GateIdentity(x, x)}
assert bfs_identity_search(gate_list, 1, max_depth=2) == id_set
# Set should not contain degenerate quantum circuits
gate_list = [x, y, z]
id_set = {GateIdentity(x, x),
GateIdentity(y, y),
GateIdentity(z, z),
GateIdentity(x, y, z)}
assert bfs_identity_search(gate_list, 1) == id_set
id_set = {GateIdentity(x, x),
GateIdentity(y, y),
GateIdentity(z, z),
GateIdentity(x, y, z),
GateIdentity(x, y, x, y),
GateIdentity(x, z, x, z),
GateIdentity(y, z, y, z)}
assert bfs_identity_search(gate_list, 1, max_depth=4) == id_set
assert bfs_identity_search(gate_list, 1, max_depth=5) == id_set
gate_list = [x, y, z, h]
id_set = {GateIdentity(x, x),
GateIdentity(y, y),
GateIdentity(z, z),
GateIdentity(h, h),
GateIdentity(x, y, z),
GateIdentity(x, y, x, y),
GateIdentity(x, z, x, z),
GateIdentity(x, h, z, h),
GateIdentity(y, z, y, z),
GateIdentity(y, h, y, h)}
assert bfs_identity_search(gate_list, 1) == id_set
id_set = {GateIdentity(x, x),
GateIdentity(y, y),
GateIdentity(z, z),
GateIdentity(h, h)}
assert id_set == bfs_identity_search(gate_list, 1, max_depth=3,
identity_only=True)
id_set = {GateIdentity(x, x),
GateIdentity(y, y),
GateIdentity(z, z),
GateIdentity(h, h),
GateIdentity(x, y, z),
GateIdentity(x, y, x, y),
GateIdentity(x, z, x, z),
GateIdentity(x, h, z, h),
GateIdentity(y, z, y, z),
GateIdentity(y, h, y, h),
GateIdentity(x, y, h, x, h),
GateIdentity(x, z, h, y, h),
GateIdentity(y, z, h, z, h)}
assert bfs_identity_search(gate_list, 1, max_depth=5) == id_set
id_set = {GateIdentity(x, x),
GateIdentity(y, y),
GateIdentity(z, z),
GateIdentity(h, h),
GateIdentity(x, h, z, h)}
assert id_set == bfs_identity_search(gate_list, 1, max_depth=4,
identity_only=True)
cnot = CNOT(1, 0)
gate_list = [x, cnot]
id_set = {GateIdentity(x, x),
GateIdentity(cnot, cnot),
GateIdentity(x, cnot, x, cnot)}
assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set
cgate_x = CGate((1,), x)
gate_list = [x, cgate_x]
id_set = {GateIdentity(x, x),
GateIdentity(cgate_x, cgate_x),
GateIdentity(x, cgate_x, x, cgate_x)}
assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set
cgate_z = CGate((0,), Z(1))
gate_list = [cnot, cgate_z, h]
id_set = {GateIdentity(h, h),
GateIdentity(cgate_z, cgate_z),
GateIdentity(cnot, cnot),
GateIdentity(cnot, h, cgate_z, h)}
assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set
s = PhaseGate(0)
t = TGate(0)
gate_list = [s, t]
id_set = {GateIdentity(s, s, s, s)}
assert bfs_identity_search(gate_list, 1, max_depth=4) == id_set
def test_bfs_identity_search_xfail():
s = PhaseGate(0)
t = TGate(0)
gate_list = [Dagger(s), t]
id_set = {GateIdentity(Dagger(s), t, t)}
assert bfs_identity_search(gate_list, 1, max_depth=3) == id_set