ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/tests/test_matrixutils.py

137 lines
4.0 KiB
Python

from sympy.core.random import randint
from sympy.core.numbers import Integer
from sympy.matrices.dense import (Matrix, ones, zeros)
from sympy.physics.quantum.matrixutils import (
to_sympy, to_numpy, to_scipy_sparse, matrix_tensor_product,
matrix_to_zero, matrix_zeros, numpy_ndarray, scipy_sparse_matrix
)
from sympy.external import import_module
from sympy.testing.pytest import skip
m = Matrix([[1, 2], [3, 4]])
def test_sympy_to_sympy():
assert to_sympy(m) == m
def test_matrix_to_zero():
assert matrix_to_zero(m) == m
assert matrix_to_zero(Matrix([[0, 0], [0, 0]])) == Integer(0)
np = import_module('numpy')
def test_to_numpy():
if not np:
skip("numpy not installed.")
result = np.array([[1, 2], [3, 4]], dtype='complex')
assert (to_numpy(m) == result).all()
def test_matrix_tensor_product():
if not np:
skip("numpy not installed.")
l1 = zeros(4)
for i in range(16):
l1[i] = 2**i
l2 = zeros(4)
for i in range(16):
l2[i] = i
l3 = zeros(2)
for i in range(4):
l3[i] = i
vec = Matrix([1, 2, 3])
#test for Matrix known 4x4 matricies
numpyl1 = np.array(l1.tolist())
numpyl2 = np.array(l2.tolist())
numpy_product = np.kron(numpyl1, numpyl2)
args = [l1, l2]
sympy_product = matrix_tensor_product(*args)
assert numpy_product.tolist() == sympy_product.tolist()
numpy_product = np.kron(numpyl2, numpyl1)
args = [l2, l1]
sympy_product = matrix_tensor_product(*args)
assert numpy_product.tolist() == sympy_product.tolist()
#test for other known matrix of different dimensions
numpyl2 = np.array(l3.tolist())
numpy_product = np.kron(numpyl1, numpyl2)
args = [l1, l3]
sympy_product = matrix_tensor_product(*args)
assert numpy_product.tolist() == sympy_product.tolist()
numpy_product = np.kron(numpyl2, numpyl1)
args = [l3, l1]
sympy_product = matrix_tensor_product(*args)
assert numpy_product.tolist() == sympy_product.tolist()
#test for non square matrix
numpyl2 = np.array(vec.tolist())
numpy_product = np.kron(numpyl1, numpyl2)
args = [l1, vec]
sympy_product = matrix_tensor_product(*args)
assert numpy_product.tolist() == sympy_product.tolist()
numpy_product = np.kron(numpyl2, numpyl1)
args = [vec, l1]
sympy_product = matrix_tensor_product(*args)
assert numpy_product.tolist() == sympy_product.tolist()
#test for random matrix with random values that are floats
random_matrix1 = np.random.rand(randint(1, 5), randint(1, 5))
random_matrix2 = np.random.rand(randint(1, 5), randint(1, 5))
numpy_product = np.kron(random_matrix1, random_matrix2)
args = [Matrix(random_matrix1.tolist()), Matrix(random_matrix2.tolist())]
sympy_product = matrix_tensor_product(*args)
assert not (sympy_product - Matrix(numpy_product.tolist())).tolist() > \
(ones(sympy_product.rows, sympy_product.cols)*epsilon).tolist()
#test for three matrix kronecker
sympy_product = matrix_tensor_product(l1, vec, l2)
numpy_product = np.kron(l1, np.kron(vec, l2))
assert numpy_product.tolist() == sympy_product.tolist()
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
def test_to_scipy_sparse():
if not np:
skip("numpy not installed.")
if not scipy:
skip("scipy not installed.")
else:
sparse = scipy.sparse
result = sparse.csr_matrix([[1, 2], [3, 4]], dtype='complex')
assert np.linalg.norm((to_scipy_sparse(m) - result).todense()) == 0.0
epsilon = .000001
def test_matrix_zeros_sympy():
sym = matrix_zeros(4, 4, format='sympy')
assert isinstance(sym, Matrix)
def test_matrix_zeros_numpy():
if not np:
skip("numpy not installed.")
num = matrix_zeros(4, 4, format='numpy')
assert isinstance(num, numpy_ndarray)
def test_matrix_zeros_scipy():
if not np:
skip("numpy not installed.")
if not scipy:
skip("scipy not installed.")
sci = matrix_zeros(4, 4, format='scipy.sparse')
assert isinstance(sci, scipy_sparse_matrix)