ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/tests/test_pauli.py

160 lines
4.8 KiB
Python

from sympy.core.mul import Mul
from sympy.core.numbers import I
from sympy.matrices.dense import Matrix
from sympy.printing.latex import latex
from sympy.physics.quantum import (Dagger, Commutator, AntiCommutator, qapply,
Operator, represent)
from sympy.physics.quantum.pauli import (SigmaOpBase, SigmaX, SigmaY, SigmaZ,
SigmaMinus, SigmaPlus,
qsimplify_pauli)
from sympy.physics.quantum.pauli import SigmaZKet, SigmaZBra
from sympy.testing.pytest import raises
sx, sy, sz = SigmaX(), SigmaY(), SigmaZ()
sx1, sy1, sz1 = SigmaX(1), SigmaY(1), SigmaZ(1)
sx2, sy2, sz2 = SigmaX(2), SigmaY(2), SigmaZ(2)
sm, sp = SigmaMinus(), SigmaPlus()
sm1, sp1 = SigmaMinus(1), SigmaPlus(1)
A, B = Operator("A"), Operator("B")
def test_pauli_operators_types():
assert isinstance(sx, SigmaOpBase) and isinstance(sx, SigmaX)
assert isinstance(sy, SigmaOpBase) and isinstance(sy, SigmaY)
assert isinstance(sz, SigmaOpBase) and isinstance(sz, SigmaZ)
assert isinstance(sm, SigmaOpBase) and isinstance(sm, SigmaMinus)
assert isinstance(sp, SigmaOpBase) and isinstance(sp, SigmaPlus)
def test_pauli_operators_commutator():
assert Commutator(sx, sy).doit() == 2 * I * sz
assert Commutator(sy, sz).doit() == 2 * I * sx
assert Commutator(sz, sx).doit() == 2 * I * sy
def test_pauli_operators_commutator_with_labels():
assert Commutator(sx1, sy1).doit() == 2 * I * sz1
assert Commutator(sy1, sz1).doit() == 2 * I * sx1
assert Commutator(sz1, sx1).doit() == 2 * I * sy1
assert Commutator(sx2, sy2).doit() == 2 * I * sz2
assert Commutator(sy2, sz2).doit() == 2 * I * sx2
assert Commutator(sz2, sx2).doit() == 2 * I * sy2
assert Commutator(sx1, sy2).doit() == 0
assert Commutator(sy1, sz2).doit() == 0
assert Commutator(sz1, sx2).doit() == 0
def test_pauli_operators_anticommutator():
assert AntiCommutator(sy, sz).doit() == 0
assert AntiCommutator(sz, sx).doit() == 0
assert AntiCommutator(sx, sm).doit() == 1
assert AntiCommutator(sx, sp).doit() == 1
def test_pauli_operators_adjoint():
assert Dagger(sx) == sx
assert Dagger(sy) == sy
assert Dagger(sz) == sz
def test_pauli_operators_adjoint_with_labels():
assert Dagger(sx1) == sx1
assert Dagger(sy1) == sy1
assert Dagger(sz1) == sz1
assert Dagger(sx1) != sx2
assert Dagger(sy1) != sy2
assert Dagger(sz1) != sz2
def test_pauli_operators_multiplication():
assert qsimplify_pauli(sx * sx) == 1
assert qsimplify_pauli(sy * sy) == 1
assert qsimplify_pauli(sz * sz) == 1
assert qsimplify_pauli(sx * sy) == I * sz
assert qsimplify_pauli(sy * sz) == I * sx
assert qsimplify_pauli(sz * sx) == I * sy
assert qsimplify_pauli(sy * sx) == - I * sz
assert qsimplify_pauli(sz * sy) == - I * sx
assert qsimplify_pauli(sx * sz) == - I * sy
def test_pauli_operators_multiplication_with_labels():
assert qsimplify_pauli(sx1 * sx1) == 1
assert qsimplify_pauli(sy1 * sy1) == 1
assert qsimplify_pauli(sz1 * sz1) == 1
assert isinstance(sx1 * sx2, Mul)
assert isinstance(sy1 * sy2, Mul)
assert isinstance(sz1 * sz2, Mul)
assert qsimplify_pauli(sx1 * sy1 * sx2 * sy2) == - sz1 * sz2
assert qsimplify_pauli(sy1 * sz1 * sz2 * sx2) == - sx1 * sy2
def test_pauli_states():
sx, sz = SigmaX(), SigmaZ()
up = SigmaZKet(0)
down = SigmaZKet(1)
assert qapply(sx * up) == down
assert qapply(sx * down) == up
assert qapply(sz * up) == up
assert qapply(sz * down) == - down
up = SigmaZBra(0)
down = SigmaZBra(1)
assert qapply(up * sx, dagger=True) == down
assert qapply(down * sx, dagger=True) == up
assert qapply(up * sz, dagger=True) == up
assert qapply(down * sz, dagger=True) == - down
assert Dagger(SigmaZKet(0)) == SigmaZBra(0)
assert Dagger(SigmaZBra(1)) == SigmaZKet(1)
raises(ValueError, lambda: SigmaZBra(2))
raises(ValueError, lambda: SigmaZKet(2))
def test_use_name():
assert sm.use_name is False
assert sm1.use_name is True
assert sx.use_name is False
assert sx1.use_name is True
def test_printing():
assert latex(sx) == r'{\sigma_x}'
assert latex(sx1) == r'{\sigma_x^{(1)}}'
assert latex(sy) == r'{\sigma_y}'
assert latex(sy1) == r'{\sigma_y^{(1)}}'
assert latex(sz) == r'{\sigma_z}'
assert latex(sz1) == r'{\sigma_z^{(1)}}'
assert latex(sm) == r'{\sigma_-}'
assert latex(sm1) == r'{\sigma_-^{(1)}}'
assert latex(sp) == r'{\sigma_+}'
assert latex(sp1) == r'{\sigma_+^{(1)}}'
def test_represent():
assert represent(sx) == Matrix([[0, 1], [1, 0]])
assert represent(sy) == Matrix([[0, -I], [I, 0]])
assert represent(sz) == Matrix([[1, 0], [0, -1]])
assert represent(sm) == Matrix([[0, 0], [1, 0]])
assert represent(sp) == Matrix([[0, 1], [0, 0]])