51 lines
1.8 KiB
Python
51 lines
1.8 KiB
Python
from sympy.core.numbers import (I, pi)
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.functions.elementary.exponential import exp
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.matrices.dense import Matrix
|
|
|
|
from sympy.physics.quantum.qft import QFT, IQFT, RkGate
|
|
from sympy.physics.quantum.gate import (ZGate, SwapGate, HadamardGate, CGate,
|
|
PhaseGate, TGate)
|
|
from sympy.physics.quantum.qubit import Qubit
|
|
from sympy.physics.quantum.qapply import qapply
|
|
from sympy.physics.quantum.represent import represent
|
|
|
|
|
|
def test_RkGate():
|
|
x = Symbol('x')
|
|
assert RkGate(1, x).k == x
|
|
assert RkGate(1, x).targets == (1,)
|
|
assert RkGate(1, 1) == ZGate(1)
|
|
assert RkGate(2, 2) == PhaseGate(2)
|
|
assert RkGate(3, 3) == TGate(3)
|
|
|
|
assert represent(
|
|
RkGate(0, x), nqubits=1) == Matrix([[1, 0], [0, exp(2*I*pi/2**x)]])
|
|
|
|
|
|
def test_quantum_fourier():
|
|
assert QFT(0, 3).decompose() == \
|
|
SwapGate(0, 2)*HadamardGate(0)*CGate((0,), PhaseGate(1)) * \
|
|
HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2)) * \
|
|
HadamardGate(2)
|
|
|
|
assert IQFT(0, 3).decompose() == \
|
|
HadamardGate(2)*CGate((1,), RkGate(2, -2))*CGate((0,), RkGate(2, -3)) * \
|
|
HadamardGate(1)*CGate((0,), RkGate(1, -2))*HadamardGate(0)*SwapGate(0, 2)
|
|
|
|
assert represent(QFT(0, 3), nqubits=3) == \
|
|
Matrix([[exp(2*pi*I/8)**(i*j % 8)/sqrt(8) for i in range(8)] for j in range(8)])
|
|
|
|
assert QFT(0, 4).decompose() # non-trivial decomposition
|
|
assert qapply(QFT(0, 3).decompose()*Qubit(0, 0, 0)).expand() == qapply(
|
|
HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0, 0, 0)
|
|
).expand()
|
|
|
|
|
|
def test_qft_represent():
|
|
c = QFT(0, 3)
|
|
a = represent(c, nqubits=3)
|
|
b = represent(c.decompose(), nqubits=3)
|
|
assert a.evalf(n=10) == b.evalf(n=10)
|