121 lines
4.6 KiB
Python
121 lines
4.6 KiB
Python
"""Tests for sho1d.py"""
|
|
|
|
from sympy.core.numbers import (I, Integer)
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.physics.quantum import Dagger
|
|
from sympy.physics.quantum.constants import hbar
|
|
from sympy.physics.quantum import Commutator
|
|
from sympy.physics.quantum.qapply import qapply
|
|
from sympy.physics.quantum.innerproduct import InnerProduct
|
|
from sympy.physics.quantum.cartesian import X, Px
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
|
from sympy.physics.quantum.hilbert import ComplexSpace
|
|
from sympy.physics.quantum.represent import represent
|
|
from sympy.external import import_module
|
|
from sympy.testing.pytest import skip
|
|
|
|
from sympy.physics.quantum.sho1d import (RaisingOp, LoweringOp,
|
|
SHOKet, SHOBra,
|
|
Hamiltonian, NumberOp)
|
|
|
|
ad = RaisingOp('a')
|
|
a = LoweringOp('a')
|
|
k = SHOKet('k')
|
|
kz = SHOKet(0)
|
|
kf = SHOKet(1)
|
|
k3 = SHOKet(3)
|
|
b = SHOBra('b')
|
|
b3 = SHOBra(3)
|
|
H = Hamiltonian('H')
|
|
N = NumberOp('N')
|
|
omega = Symbol('omega')
|
|
m = Symbol('m')
|
|
ndim = Integer(4)
|
|
|
|
np = import_module('numpy')
|
|
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
|
|
|
|
ad_rep_sympy = represent(ad, basis=N, ndim=4, format='sympy')
|
|
a_rep = represent(a, basis=N, ndim=4, format='sympy')
|
|
N_rep = represent(N, basis=N, ndim=4, format='sympy')
|
|
H_rep = represent(H, basis=N, ndim=4, format='sympy')
|
|
k3_rep = represent(k3, basis=N, ndim=4, format='sympy')
|
|
b3_rep = represent(b3, basis=N, ndim=4, format='sympy')
|
|
|
|
def test_RaisingOp():
|
|
assert Dagger(ad) == a
|
|
assert Commutator(ad, a).doit() == Integer(-1)
|
|
assert Commutator(ad, N).doit() == Integer(-1)*ad
|
|
assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand()
|
|
assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand()
|
|
assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand()
|
|
assert ad.rewrite('xp').doit() == \
|
|
(Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X)
|
|
assert ad.hilbert_space == ComplexSpace(S.Infinity)
|
|
for i in range(ndim - 1):
|
|
assert ad_rep_sympy[i + 1,i] == sqrt(i + 1)
|
|
|
|
if not np:
|
|
skip("numpy not installed.")
|
|
|
|
ad_rep_numpy = represent(ad, basis=N, ndim=4, format='numpy')
|
|
for i in range(ndim - 1):
|
|
assert ad_rep_numpy[i + 1,i] == float(sqrt(i + 1))
|
|
|
|
if not np:
|
|
skip("numpy not installed.")
|
|
if not scipy:
|
|
skip("scipy not installed.")
|
|
|
|
ad_rep_scipy = represent(ad, basis=N, ndim=4, format='scipy.sparse', spmatrix='lil')
|
|
for i in range(ndim - 1):
|
|
assert ad_rep_scipy[i + 1,i] == float(sqrt(i + 1))
|
|
|
|
assert ad_rep_numpy.dtype == 'float64'
|
|
assert ad_rep_scipy.dtype == 'float64'
|
|
|
|
def test_LoweringOp():
|
|
assert Dagger(a) == ad
|
|
assert Commutator(a, ad).doit() == Integer(1)
|
|
assert Commutator(a, N).doit() == a
|
|
assert qapply(a*k) == (sqrt(k.n)*SHOKet(k.n-Integer(1))).expand()
|
|
assert qapply(a*kz) == Integer(0)
|
|
assert qapply(a*kf) == (sqrt(kf.n)*SHOKet(kf.n-Integer(1))).expand()
|
|
assert a.rewrite('xp').doit() == \
|
|
(Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(I*Px + m*omega*X)
|
|
for i in range(ndim - 1):
|
|
assert a_rep[i,i + 1] == sqrt(i + 1)
|
|
|
|
def test_NumberOp():
|
|
assert Commutator(N, ad).doit() == ad
|
|
assert Commutator(N, a).doit() == Integer(-1)*a
|
|
assert Commutator(N, H).doit() == Integer(0)
|
|
assert qapply(N*k) == (k.n*k).expand()
|
|
assert N.rewrite('a').doit() == ad*a
|
|
assert N.rewrite('xp').doit() == (Integer(1)/(Integer(2)*m*hbar*omega))*(
|
|
Px**2 + (m*omega*X)**2) - Integer(1)/Integer(2)
|
|
assert N.rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2)
|
|
for i in range(ndim):
|
|
assert N_rep[i,i] == i
|
|
assert N_rep == ad_rep_sympy*a_rep
|
|
|
|
def test_Hamiltonian():
|
|
assert Commutator(H, N).doit() == Integer(0)
|
|
assert qapply(H*k) == ((hbar*omega*(k.n + Integer(1)/Integer(2)))*k).expand()
|
|
assert H.rewrite('a').doit() == hbar*omega*(ad*a + Integer(1)/Integer(2))
|
|
assert H.rewrite('xp').doit() == \
|
|
(Integer(1)/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
|
|
assert H.rewrite('N').doit() == hbar*omega*(N + Integer(1)/Integer(2))
|
|
for i in range(ndim):
|
|
assert H_rep[i,i] == hbar*omega*(i + Integer(1)/Integer(2))
|
|
|
|
def test_SHOKet():
|
|
assert SHOKet('k').dual_class() == SHOBra
|
|
assert SHOBra('b').dual_class() == SHOKet
|
|
assert InnerProduct(b,k).doit() == KroneckerDelta(k.n, b.n)
|
|
assert k.hilbert_space == ComplexSpace(S.Infinity)
|
|
assert k3_rep[k3.n, 0] == Integer(1)
|
|
assert b3_rep[0, b3.n] == Integer(1)
|