ai-content-maker/.venv/Lib/site-packages/sympy/polys/agca/homomorphisms.py

692 lines
21 KiB
Python

"""
Computations with homomorphisms of modules and rings.
This module implements classes for representing homomorphisms of rings and
their modules. Instead of instantiating the classes directly, you should use
the function ``homomorphism(from, to, matrix)`` to create homomorphism objects.
"""
from sympy.polys.agca.modules import (Module, FreeModule, QuotientModule,
SubModule, SubQuotientModule)
from sympy.polys.polyerrors import CoercionFailed
# The main computational task for module homomorphisms is kernels.
# For this reason, the concrete classes are organised by domain module type.
class ModuleHomomorphism:
"""
Abstract base class for module homomoprhisms. Do not instantiate.
Instead, use the ``homomorphism`` function:
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> homomorphism(F, F, [[1, 0], [0, 1]])
Matrix([
[1, 0], : QQ[x]**2 -> QQ[x]**2
[0, 1]])
Attributes:
- ring - the ring over which we are considering modules
- domain - the domain module
- codomain - the codomain module
- _ker - cached kernel
- _img - cached image
Non-implemented methods:
- _kernel
- _image
- _restrict_domain
- _restrict_codomain
- _quotient_domain
- _quotient_codomain
- _apply
- _mul_scalar
- _compose
- _add
"""
def __init__(self, domain, codomain):
if not isinstance(domain, Module):
raise TypeError('Source must be a module, got %s' % domain)
if not isinstance(codomain, Module):
raise TypeError('Target must be a module, got %s' % codomain)
if domain.ring != codomain.ring:
raise ValueError('Source and codomain must be over same ring, '
'got %s != %s' % (domain, codomain))
self.domain = domain
self.codomain = codomain
self.ring = domain.ring
self._ker = None
self._img = None
def kernel(self):
r"""
Compute the kernel of ``self``.
That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute
`ker(\phi) = \{x \in M | \phi(x) = 0\}`. This is a submodule of `M`.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> homomorphism(F, F, [[1, 0], [x, 0]]).kernel()
<[x, -1]>
"""
if self._ker is None:
self._ker = self._kernel()
return self._ker
def image(self):
r"""
Compute the image of ``self``.
That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute
`im(\phi) = \{\phi(x) | x \in M \}`. This is a submodule of `N`.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> homomorphism(F, F, [[1, 0], [x, 0]]).image() == F.submodule([1, 0])
True
"""
if self._img is None:
self._img = self._image()
return self._img
def _kernel(self):
"""Compute the kernel of ``self``."""
raise NotImplementedError
def _image(self):
"""Compute the image of ``self``."""
raise NotImplementedError
def _restrict_domain(self, sm):
"""Implementation of domain restriction."""
raise NotImplementedError
def _restrict_codomain(self, sm):
"""Implementation of codomain restriction."""
raise NotImplementedError
def _quotient_domain(self, sm):
"""Implementation of domain quotient."""
raise NotImplementedError
def _quotient_codomain(self, sm):
"""Implementation of codomain quotient."""
raise NotImplementedError
def restrict_domain(self, sm):
"""
Return ``self``, with the domain restricted to ``sm``.
Here ``sm`` has to be a submodule of ``self.domain``.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h
Matrix([
[1, x], : QQ[x]**2 -> QQ[x]**2
[0, 0]])
>>> h.restrict_domain(F.submodule([1, 0]))
Matrix([
[1, x], : <[1, 0]> -> QQ[x]**2
[0, 0]])
This is the same as just composing on the right with the submodule
inclusion:
>>> h * F.submodule([1, 0]).inclusion_hom()
Matrix([
[1, x], : <[1, 0]> -> QQ[x]**2
[0, 0]])
"""
if not self.domain.is_submodule(sm):
raise ValueError('sm must be a submodule of %s, got %s'
% (self.domain, sm))
if sm == self.domain:
return self
return self._restrict_domain(sm)
def restrict_codomain(self, sm):
"""
Return ``self``, with codomain restricted to to ``sm``.
Here ``sm`` has to be a submodule of ``self.codomain`` containing the
image.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h
Matrix([
[1, x], : QQ[x]**2 -> QQ[x]**2
[0, 0]])
>>> h.restrict_codomain(F.submodule([1, 0]))
Matrix([
[1, x], : QQ[x]**2 -> <[1, 0]>
[0, 0]])
"""
if not sm.is_submodule(self.image()):
raise ValueError('the image %s must contain sm, got %s'
% (self.image(), sm))
if sm == self.codomain:
return self
return self._restrict_codomain(sm)
def quotient_domain(self, sm):
"""
Return ``self`` with domain replaced by ``domain/sm``.
Here ``sm`` must be a submodule of ``self.kernel()``.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h
Matrix([
[1, x], : QQ[x]**2 -> QQ[x]**2
[0, 0]])
>>> h.quotient_domain(F.submodule([-x, 1]))
Matrix([
[1, x], : QQ[x]**2/<[-x, 1]> -> QQ[x]**2
[0, 0]])
"""
if not self.kernel().is_submodule(sm):
raise ValueError('kernel %s must contain sm, got %s' %
(self.kernel(), sm))
if sm.is_zero():
return self
return self._quotient_domain(sm)
def quotient_codomain(self, sm):
"""
Return ``self`` with codomain replaced by ``codomain/sm``.
Here ``sm`` must be a submodule of ``self.codomain``.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h
Matrix([
[1, x], : QQ[x]**2 -> QQ[x]**2
[0, 0]])
>>> h.quotient_codomain(F.submodule([1, 1]))
Matrix([
[1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]>
[0, 0]])
This is the same as composing with the quotient map on the left:
>>> (F/[(1, 1)]).quotient_hom() * h
Matrix([
[1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]>
[0, 0]])
"""
if not self.codomain.is_submodule(sm):
raise ValueError('sm must be a submodule of codomain %s, got %s'
% (self.codomain, sm))
if sm.is_zero():
return self
return self._quotient_codomain(sm)
def _apply(self, elem):
"""Apply ``self`` to ``elem``."""
raise NotImplementedError
def __call__(self, elem):
return self.codomain.convert(self._apply(self.domain.convert(elem)))
def _compose(self, oth):
"""
Compose ``self`` with ``oth``, that is, return the homomorphism
obtained by first applying then ``self``, then ``oth``.
(This method is private since in this syntax, it is non-obvious which
homomorphism is executed first.)
"""
raise NotImplementedError
def _mul_scalar(self, c):
"""Scalar multiplication. ``c`` is guaranteed in self.ring."""
raise NotImplementedError
def _add(self, oth):
"""
Homomorphism addition.
``oth`` is guaranteed to be a homomorphism with same domain/codomain.
"""
raise NotImplementedError
def _check_hom(self, oth):
"""Helper to check that oth is a homomorphism with same domain/codomain."""
if not isinstance(oth, ModuleHomomorphism):
return False
return oth.domain == self.domain and oth.codomain == self.codomain
def __mul__(self, oth):
if isinstance(oth, ModuleHomomorphism) and self.domain == oth.codomain:
return oth._compose(self)
try:
return self._mul_scalar(self.ring.convert(oth))
except CoercionFailed:
return NotImplemented
# NOTE: _compose will never be called from rmul
__rmul__ = __mul__
def __truediv__(self, oth):
try:
return self._mul_scalar(1/self.ring.convert(oth))
except CoercionFailed:
return NotImplemented
def __add__(self, oth):
if self._check_hom(oth):
return self._add(oth)
return NotImplemented
def __sub__(self, oth):
if self._check_hom(oth):
return self._add(oth._mul_scalar(self.ring.convert(-1)))
return NotImplemented
def is_injective(self):
"""
Return True if ``self`` is injective.
That is, check if the elements of the domain are mapped to the same
codomain element.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h.is_injective()
False
>>> h.quotient_domain(h.kernel()).is_injective()
True
"""
return self.kernel().is_zero()
def is_surjective(self):
"""
Return True if ``self`` is surjective.
That is, check if every element of the codomain has at least one
preimage.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h.is_surjective()
False
>>> h.restrict_codomain(h.image()).is_surjective()
True
"""
return self.image() == self.codomain
def is_isomorphism(self):
"""
Return True if ``self`` is an isomorphism.
That is, check if every element of the codomain has precisely one
preimage. Equivalently, ``self`` is both injective and surjective.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h = h.restrict_codomain(h.image())
>>> h.is_isomorphism()
False
>>> h.quotient_domain(h.kernel()).is_isomorphism()
True
"""
return self.is_injective() and self.is_surjective()
def is_zero(self):
"""
Return True if ``self`` is a zero morphism.
That is, check if every element of the domain is mapped to zero
under self.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h.is_zero()
False
>>> h.restrict_domain(F.submodule()).is_zero()
True
>>> h.quotient_codomain(h.image()).is_zero()
True
"""
return self.image().is_zero()
def __eq__(self, oth):
try:
return (self - oth).is_zero()
except TypeError:
return False
def __ne__(self, oth):
return not (self == oth)
class MatrixHomomorphism(ModuleHomomorphism):
r"""
Helper class for all homomoprhisms which are expressed via a matrix.
That is, for such homomorphisms ``domain`` is contained in a module
generated by finitely many elements `e_1, \ldots, e_n`, so that the
homomorphism is determined uniquely by its action on the `e_i`. It
can thus be represented as a vector of elements of the codomain module,
or potentially a supermodule of the codomain module
(and hence conventionally as a matrix, if there is a similar interpretation
for elements of the codomain module).
Note that this class does *not* assume that the `e_i` freely generate a
submodule, nor that ``domain`` is even all of this submodule. It exists
only to unify the interface.
Do not instantiate.
Attributes:
- matrix - the list of images determining the homomorphism.
NOTE: the elements of matrix belong to either self.codomain or
self.codomain.container
Still non-implemented methods:
- kernel
- _apply
"""
def __init__(self, domain, codomain, matrix):
ModuleHomomorphism.__init__(self, domain, codomain)
if len(matrix) != domain.rank:
raise ValueError('Need to provide %s elements, got %s'
% (domain.rank, len(matrix)))
converter = self.codomain.convert
if isinstance(self.codomain, (SubModule, SubQuotientModule)):
converter = self.codomain.container.convert
self.matrix = tuple(converter(x) for x in matrix)
def _sympy_matrix(self):
"""Helper function which returns a SymPy matrix ``self.matrix``."""
from sympy.matrices import Matrix
c = lambda x: x
if isinstance(self.codomain, (QuotientModule, SubQuotientModule)):
c = lambda x: x.data
return Matrix([[self.ring.to_sympy(y) for y in c(x)] for x in self.matrix]).T
def __repr__(self):
lines = repr(self._sympy_matrix()).split('\n')
t = " : %s -> %s" % (self.domain, self.codomain)
s = ' '*len(t)
n = len(lines)
for i in range(n // 2):
lines[i] += s
lines[n // 2] += t
for i in range(n//2 + 1, n):
lines[i] += s
return '\n'.join(lines)
def _restrict_domain(self, sm):
"""Implementation of domain restriction."""
return SubModuleHomomorphism(sm, self.codomain, self.matrix)
def _restrict_codomain(self, sm):
"""Implementation of codomain restriction."""
return self.__class__(self.domain, sm, self.matrix)
def _quotient_domain(self, sm):
"""Implementation of domain quotient."""
return self.__class__(self.domain/sm, self.codomain, self.matrix)
def _quotient_codomain(self, sm):
"""Implementation of codomain quotient."""
Q = self.codomain/sm
converter = Q.convert
if isinstance(self.codomain, SubModule):
converter = Q.container.convert
return self.__class__(self.domain, self.codomain/sm,
[converter(x) for x in self.matrix])
def _add(self, oth):
return self.__class__(self.domain, self.codomain,
[x + y for x, y in zip(self.matrix, oth.matrix)])
def _mul_scalar(self, c):
return self.__class__(self.domain, self.codomain, [c*x for x in self.matrix])
def _compose(self, oth):
return self.__class__(self.domain, oth.codomain, [oth(x) for x in self.matrix])
class FreeModuleHomomorphism(MatrixHomomorphism):
"""
Concrete class for homomorphisms with domain a free module or a quotient
thereof.
Do not instantiate; the constructor does not check that your data is well
defined. Use the ``homomorphism`` function instead:
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> homomorphism(F, F, [[1, 0], [0, 1]])
Matrix([
[1, 0], : QQ[x]**2 -> QQ[x]**2
[0, 1]])
"""
def _apply(self, elem):
if isinstance(self.domain, QuotientModule):
elem = elem.data
return sum(x * e for x, e in zip(elem, self.matrix))
def _image(self):
return self.codomain.submodule(*self.matrix)
def _kernel(self):
# The domain is either a free module or a quotient thereof.
# It does not matter if it is a quotient, because that won't increase
# the kernel.
# Our generators {e_i} are sent to the matrix entries {b_i}.
# The kernel is essentially the syzygy module of these {b_i}.
syz = self.image().syzygy_module()
return self.domain.submodule(*syz.gens)
class SubModuleHomomorphism(MatrixHomomorphism):
"""
Concrete class for homomorphism with domain a submodule of a free module
or a quotient thereof.
Do not instantiate; the constructor does not check that your data is well
defined. Use the ``homomorphism`` function instead:
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> M = QQ.old_poly_ring(x).free_module(2)*x
>>> homomorphism(M, M, [[1, 0], [0, 1]])
Matrix([
[1, 0], : <[x, 0], [0, x]> -> <[x, 0], [0, x]>
[0, 1]])
"""
def _apply(self, elem):
if isinstance(self.domain, SubQuotientModule):
elem = elem.data
return sum(x * e for x, e in zip(elem, self.matrix))
def _image(self):
return self.codomain.submodule(*[self(x) for x in self.domain.gens])
def _kernel(self):
syz = self.image().syzygy_module()
return self.domain.submodule(
*[sum(xi*gi for xi, gi in zip(s, self.domain.gens))
for s in syz.gens])
def homomorphism(domain, codomain, matrix):
r"""
Create a homomorphism object.
This function tries to build a homomorphism from ``domain`` to ``codomain``
via the matrix ``matrix``.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism
>>> R = QQ.old_poly_ring(x)
>>> T = R.free_module(2)
If ``domain`` is a free module generated by `e_1, \ldots, e_n`, then
``matrix`` should be an n-element iterable `(b_1, \ldots, b_n)` where
the `b_i` are elements of ``codomain``. The constructed homomorphism is the
unique homomorphism sending `e_i` to `b_i`.
>>> F = R.free_module(2)
>>> h = homomorphism(F, T, [[1, x], [x**2, 0]])
>>> h
Matrix([
[1, x**2], : QQ[x]**2 -> QQ[x]**2
[x, 0]])
>>> h([1, 0])
[1, x]
>>> h([0, 1])
[x**2, 0]
>>> h([1, 1])
[x**2 + 1, x]
If ``domain`` is a submodule of a free module, them ``matrix`` determines
a homomoprhism from the containing free module to ``codomain``, and the
homomorphism returned is obtained by restriction to ``domain``.
>>> S = F.submodule([1, 0], [0, x])
>>> homomorphism(S, T, [[1, x], [x**2, 0]])
Matrix([
[1, x**2], : <[1, 0], [0, x]> -> QQ[x]**2
[x, 0]])
If ``domain`` is a (sub)quotient `N/K`, then ``matrix`` determines a
homomorphism from `N` to ``codomain``. If the kernel contains `K`, this
homomorphism descends to ``domain`` and is returned; otherwise an exception
is raised.
>>> homomorphism(S/[(1, 0)], T, [0, [x**2, 0]])
Matrix([
[0, x**2], : <[1, 0] + <[1, 0]>, [0, x] + <[1, 0]>, [1, 0] + <[1, 0]>> -> QQ[x]**2
[0, 0]])
>>> homomorphism(S/[(0, x)], T, [0, [x**2, 0]])
Traceback (most recent call last):
...
ValueError: kernel <[1, 0], [0, 0]> must contain sm, got <[0,x]>
"""
def freepres(module):
"""
Return a tuple ``(F, S, Q, c)`` where ``F`` is a free module, ``S`` is a
submodule of ``F``, and ``Q`` a submodule of ``S``, such that
``module = S/Q``, and ``c`` is a conversion function.
"""
if isinstance(module, FreeModule):
return module, module, module.submodule(), lambda x: module.convert(x)
if isinstance(module, QuotientModule):
return (module.base, module.base, module.killed_module,
lambda x: module.convert(x).data)
if isinstance(module, SubQuotientModule):
return (module.base.container, module.base, module.killed_module,
lambda x: module.container.convert(x).data)
# an ordinary submodule
return (module.container, module, module.submodule(),
lambda x: module.container.convert(x))
SF, SS, SQ, _ = freepres(domain)
TF, TS, TQ, c = freepres(codomain)
# NOTE this is probably a bit inefficient (redundant checks)
return FreeModuleHomomorphism(SF, TF, [c(x) for x in matrix]
).restrict_domain(SS).restrict_codomain(TS
).quotient_codomain(TQ).quotient_domain(SQ)