772 lines
24 KiB
Python
772 lines
24 KiB
Python
"""Tools for polynomial factorization routines in characteristic zero. """
|
|
|
|
from sympy.polys.rings import ring, xring
|
|
from sympy.polys.domains import FF, ZZ, QQ, ZZ_I, QQ_I, RR, EX
|
|
|
|
from sympy.polys import polyconfig as config
|
|
from sympy.polys.polyerrors import DomainError
|
|
from sympy.polys.polyclasses import ANP
|
|
from sympy.polys.specialpolys import f_polys, w_polys
|
|
|
|
from sympy.core.numbers import I
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.trigonometric import sin
|
|
from sympy.ntheory.generate import nextprime
|
|
from sympy.testing.pytest import raises, XFAIL
|
|
|
|
|
|
f_0, f_1, f_2, f_3, f_4, f_5, f_6 = f_polys()
|
|
w_1, w_2 = w_polys()
|
|
|
|
def test_dup_trial_division():
|
|
R, x = ring("x", ZZ)
|
|
assert R.dup_trial_division(x**5 + 8*x**4 + 25*x**3 + 38*x**2 + 28*x + 8, (x + 1, x + 2)) == [(x + 1, 2), (x + 2, 3)]
|
|
|
|
|
|
def test_dmp_trial_division():
|
|
R, x, y = ring("x,y", ZZ)
|
|
assert R.dmp_trial_division(x**5 + 8*x**4 + 25*x**3 + 38*x**2 + 28*x + 8, (x + 1, x + 2)) == [(x + 1, 2), (x + 2, 3)]
|
|
|
|
|
|
def test_dup_zz_mignotte_bound():
|
|
R, x = ring("x", ZZ)
|
|
assert R.dup_zz_mignotte_bound(2*x**2 + 3*x + 4) == 6
|
|
assert R.dup_zz_mignotte_bound(x**3 + 14*x**2 + 56*x + 64) == 152
|
|
|
|
|
|
def test_dmp_zz_mignotte_bound():
|
|
R, x, y = ring("x,y", ZZ)
|
|
assert R.dmp_zz_mignotte_bound(2*x**2 + 3*x + 4) == 32
|
|
|
|
|
|
def test_dup_zz_hensel_step():
|
|
R, x = ring("x", ZZ)
|
|
|
|
f = x**4 - 1
|
|
g = x**3 + 2*x**2 - x - 2
|
|
h = x - 2
|
|
s = -2
|
|
t = 2*x**2 - 2*x - 1
|
|
|
|
G, H, S, T = R.dup_zz_hensel_step(5, f, g, h, s, t)
|
|
|
|
assert G == x**3 + 7*x**2 - x - 7
|
|
assert H == x - 7
|
|
assert S == 8
|
|
assert T == -8*x**2 - 12*x - 1
|
|
|
|
|
|
def test_dup_zz_hensel_lift():
|
|
R, x = ring("x", ZZ)
|
|
|
|
f = x**4 - 1
|
|
F = [x - 1, x - 2, x + 2, x + 1]
|
|
|
|
assert R.dup_zz_hensel_lift(ZZ(5), f, F, 4) == \
|
|
[x - 1, x - 182, x + 182, x + 1]
|
|
|
|
|
|
def test_dup_zz_irreducible_p():
|
|
R, x = ring("x", ZZ)
|
|
|
|
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 7) is None
|
|
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 4) is None
|
|
|
|
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 10) is True
|
|
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 14) is True
|
|
|
|
|
|
def test_dup_cyclotomic_p():
|
|
R, x = ring("x", ZZ)
|
|
|
|
assert R.dup_cyclotomic_p(x - 1) is True
|
|
assert R.dup_cyclotomic_p(x + 1) is True
|
|
assert R.dup_cyclotomic_p(x**2 + x + 1) is True
|
|
assert R.dup_cyclotomic_p(x**2 + 1) is True
|
|
assert R.dup_cyclotomic_p(x**4 + x**3 + x**2 + x + 1) is True
|
|
assert R.dup_cyclotomic_p(x**2 - x + 1) is True
|
|
assert R.dup_cyclotomic_p(x**6 + x**5 + x**4 + x**3 + x**2 + x + 1) is True
|
|
assert R.dup_cyclotomic_p(x**4 + 1) is True
|
|
assert R.dup_cyclotomic_p(x**6 + x**3 + 1) is True
|
|
|
|
assert R.dup_cyclotomic_p(0) is False
|
|
assert R.dup_cyclotomic_p(1) is False
|
|
assert R.dup_cyclotomic_p(x) is False
|
|
assert R.dup_cyclotomic_p(x + 2) is False
|
|
assert R.dup_cyclotomic_p(3*x + 1) is False
|
|
assert R.dup_cyclotomic_p(x**2 - 1) is False
|
|
|
|
f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
|
|
assert R.dup_cyclotomic_p(f) is False
|
|
|
|
g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
|
|
assert R.dup_cyclotomic_p(g) is True
|
|
|
|
R, x = ring("x", QQ)
|
|
assert R.dup_cyclotomic_p(x**2 + x + 1) is True
|
|
assert R.dup_cyclotomic_p(QQ(1,2)*x**2 + x + 1) is False
|
|
|
|
R, x = ring("x", ZZ["y"])
|
|
assert R.dup_cyclotomic_p(x**2 + x + 1) is False
|
|
|
|
|
|
def test_dup_zz_cyclotomic_poly():
|
|
R, x = ring("x", ZZ)
|
|
|
|
assert R.dup_zz_cyclotomic_poly(1) == x - 1
|
|
assert R.dup_zz_cyclotomic_poly(2) == x + 1
|
|
assert R.dup_zz_cyclotomic_poly(3) == x**2 + x + 1
|
|
assert R.dup_zz_cyclotomic_poly(4) == x**2 + 1
|
|
assert R.dup_zz_cyclotomic_poly(5) == x**4 + x**3 + x**2 + x + 1
|
|
assert R.dup_zz_cyclotomic_poly(6) == x**2 - x + 1
|
|
assert R.dup_zz_cyclotomic_poly(7) == x**6 + x**5 + x**4 + x**3 + x**2 + x + 1
|
|
assert R.dup_zz_cyclotomic_poly(8) == x**4 + 1
|
|
assert R.dup_zz_cyclotomic_poly(9) == x**6 + x**3 + 1
|
|
|
|
|
|
def test_dup_zz_cyclotomic_factor():
|
|
R, x = ring("x", ZZ)
|
|
|
|
assert R.dup_zz_cyclotomic_factor(0) is None
|
|
assert R.dup_zz_cyclotomic_factor(1) is None
|
|
|
|
assert R.dup_zz_cyclotomic_factor(2*x**10 - 1) is None
|
|
assert R.dup_zz_cyclotomic_factor(x**10 - 3) is None
|
|
assert R.dup_zz_cyclotomic_factor(x**10 + x**5 - 1) is None
|
|
|
|
assert R.dup_zz_cyclotomic_factor(x + 1) == [x + 1]
|
|
assert R.dup_zz_cyclotomic_factor(x - 1) == [x - 1]
|
|
|
|
assert R.dup_zz_cyclotomic_factor(x**2 + 1) == [x**2 + 1]
|
|
assert R.dup_zz_cyclotomic_factor(x**2 - 1) == [x - 1, x + 1]
|
|
|
|
assert R.dup_zz_cyclotomic_factor(x**27 + 1) == \
|
|
[x + 1, x**2 - x + 1, x**6 - x**3 + 1, x**18 - x**9 + 1]
|
|
assert R.dup_zz_cyclotomic_factor(x**27 - 1) == \
|
|
[x - 1, x**2 + x + 1, x**6 + x**3 + 1, x**18 + x**9 + 1]
|
|
|
|
|
|
def test_dup_zz_factor():
|
|
R, x = ring("x", ZZ)
|
|
|
|
assert R.dup_zz_factor(0) == (0, [])
|
|
assert R.dup_zz_factor(7) == (7, [])
|
|
assert R.dup_zz_factor(-7) == (-7, [])
|
|
|
|
assert R.dup_zz_factor_sqf(0) == (0, [])
|
|
assert R.dup_zz_factor_sqf(7) == (7, [])
|
|
assert R.dup_zz_factor_sqf(-7) == (-7, [])
|
|
|
|
assert R.dup_zz_factor(2*x + 4) == (2, [(x + 2, 1)])
|
|
assert R.dup_zz_factor_sqf(2*x + 4) == (2, [x + 2])
|
|
|
|
f = x**4 + x + 1
|
|
|
|
for i in range(0, 20):
|
|
assert R.dup_zz_factor(f) == (1, [(f, 1)])
|
|
|
|
assert R.dup_zz_factor(x**2 + 2*x + 2) == \
|
|
(1, [(x**2 + 2*x + 2, 1)])
|
|
|
|
assert R.dup_zz_factor(18*x**2 + 12*x + 2) == \
|
|
(2, [(3*x + 1, 2)])
|
|
|
|
assert R.dup_zz_factor(-9*x**2 + 1) == \
|
|
(-1, [(3*x - 1, 1),
|
|
(3*x + 1, 1)])
|
|
|
|
assert R.dup_zz_factor_sqf(-9*x**2 + 1) == \
|
|
(-1, [3*x - 1,
|
|
3*x + 1])
|
|
|
|
assert R.dup_zz_factor(x**3 - 6*x**2 + 11*x - 6) == \
|
|
(1, [(x - 3, 1),
|
|
(x - 2, 1),
|
|
(x - 1, 1)])
|
|
|
|
assert R.dup_zz_factor_sqf(x**3 - 6*x**2 + 11*x - 6) == \
|
|
(1, [x - 3,
|
|
x - 2,
|
|
x - 1])
|
|
|
|
assert R.dup_zz_factor(3*x**3 + 10*x**2 + 13*x + 10) == \
|
|
(1, [(x + 2, 1),
|
|
(3*x**2 + 4*x + 5, 1)])
|
|
|
|
assert R.dup_zz_factor_sqf(3*x**3 + 10*x**2 + 13*x + 10) == \
|
|
(1, [x + 2,
|
|
3*x**2 + 4*x + 5])
|
|
|
|
assert R.dup_zz_factor(-x**6 + x**2) == \
|
|
(-1, [(x - 1, 1),
|
|
(x + 1, 1),
|
|
(x, 2),
|
|
(x**2 + 1, 1)])
|
|
|
|
f = 1080*x**8 + 5184*x**7 + 2099*x**6 + 744*x**5 + 2736*x**4 - 648*x**3 + 129*x**2 - 324
|
|
|
|
assert R.dup_zz_factor(f) == \
|
|
(1, [(5*x**4 + 24*x**3 + 9*x**2 + 12, 1),
|
|
(216*x**4 + 31*x**2 - 27, 1)])
|
|
|
|
f = -29802322387695312500000000000000000000*x**25 \
|
|
+ 2980232238769531250000000000000000*x**20 \
|
|
+ 1743435859680175781250000000000*x**15 \
|
|
+ 114142894744873046875000000*x**10 \
|
|
- 210106372833251953125*x**5 \
|
|
+ 95367431640625
|
|
|
|
assert R.dup_zz_factor(f) == \
|
|
(-95367431640625, [(5*x - 1, 1),
|
|
(100*x**2 + 10*x - 1, 2),
|
|
(625*x**4 + 125*x**3 + 25*x**2 + 5*x + 1, 1),
|
|
(10000*x**4 - 3000*x**3 + 400*x**2 - 20*x + 1, 2),
|
|
(10000*x**4 + 2000*x**3 + 400*x**2 + 30*x + 1, 2)])
|
|
|
|
f = x**10 - 1
|
|
|
|
config.setup('USE_CYCLOTOMIC_FACTOR', True)
|
|
F_0 = R.dup_zz_factor(f)
|
|
|
|
config.setup('USE_CYCLOTOMIC_FACTOR', False)
|
|
F_1 = R.dup_zz_factor(f)
|
|
|
|
assert F_0 == F_1 == \
|
|
(1, [(x - 1, 1),
|
|
(x + 1, 1),
|
|
(x**4 - x**3 + x**2 - x + 1, 1),
|
|
(x**4 + x**3 + x**2 + x + 1, 1)])
|
|
|
|
config.setup('USE_CYCLOTOMIC_FACTOR')
|
|
|
|
f = x**10 + 1
|
|
|
|
config.setup('USE_CYCLOTOMIC_FACTOR', True)
|
|
F_0 = R.dup_zz_factor(f)
|
|
|
|
config.setup('USE_CYCLOTOMIC_FACTOR', False)
|
|
F_1 = R.dup_zz_factor(f)
|
|
|
|
assert F_0 == F_1 == \
|
|
(1, [(x**2 + 1, 1),
|
|
(x**8 - x**6 + x**4 - x**2 + 1, 1)])
|
|
|
|
config.setup('USE_CYCLOTOMIC_FACTOR')
|
|
|
|
def test_dmp_zz_wang():
|
|
R, x,y,z = ring("x,y,z", ZZ)
|
|
UV, _x = ring("x", ZZ)
|
|
|
|
p = ZZ(nextprime(R.dmp_zz_mignotte_bound(w_1)))
|
|
assert p == 6291469
|
|
|
|
t_1, k_1, e_1 = y, 1, ZZ(-14)
|
|
t_2, k_2, e_2 = z, 2, ZZ(3)
|
|
t_3, k_3, e_3 = y + z, 2, ZZ(-11)
|
|
t_4, k_4, e_4 = y - z, 1, ZZ(-17)
|
|
|
|
T = [t_1, t_2, t_3, t_4]
|
|
K = [k_1, k_2, k_3, k_4]
|
|
E = [e_1, e_2, e_3, e_4]
|
|
|
|
T = zip([ t.drop(x) for t in T ], K)
|
|
|
|
A = [ZZ(-14), ZZ(3)]
|
|
|
|
S = R.dmp_eval_tail(w_1, A)
|
|
cs, s = UV.dup_primitive(S)
|
|
|
|
assert cs == 1 and s == S == \
|
|
1036728*_x**6 + 915552*_x**5 + 55748*_x**4 + 105621*_x**3 - 17304*_x**2 - 26841*_x - 644
|
|
|
|
assert R.dmp_zz_wang_non_divisors(E, cs, ZZ(4)) == [7, 3, 11, 17]
|
|
assert UV.dup_sqf_p(s) and UV.dup_degree(s) == R.dmp_degree(w_1)
|
|
|
|
_, H = UV.dup_zz_factor_sqf(s)
|
|
|
|
h_1 = 44*_x**2 + 42*_x + 1
|
|
h_2 = 126*_x**2 - 9*_x + 28
|
|
h_3 = 187*_x**2 - 23
|
|
|
|
assert H == [h_1, h_2, h_3]
|
|
|
|
LC = [ lc.drop(x) for lc in [-4*y - 4*z, -y*z**2, y**2 - z**2] ]
|
|
|
|
assert R.dmp_zz_wang_lead_coeffs(w_1, T, cs, E, H, A) == (w_1, H, LC)
|
|
|
|
factors = R.dmp_zz_wang_hensel_lifting(w_1, H, LC, A, p)
|
|
assert R.dmp_expand(factors) == w_1
|
|
|
|
|
|
@XFAIL
|
|
def test_dmp_zz_wang_fail():
|
|
R, x,y,z = ring("x,y,z", ZZ)
|
|
UV, _x = ring("x", ZZ)
|
|
|
|
p = ZZ(nextprime(R.dmp_zz_mignotte_bound(w_1)))
|
|
assert p == 6291469
|
|
|
|
H_1 = [44*x**2 + 42*x + 1, 126*x**2 - 9*x + 28, 187*x**2 - 23]
|
|
H_2 = [-4*x**2*y - 12*x**2 - 3*x*y + 1, -9*x**2*y - 9*x - 2*y, x**2*y**2 - 9*x**2 + y - 9]
|
|
H_3 = [-4*x**2*y - 12*x**2 - 3*x*y + 1, -9*x**2*y - 9*x - 2*y, x**2*y**2 - 9*x**2 + y - 9]
|
|
|
|
c_1 = -70686*x**5 - 5863*x**4 - 17826*x**3 + 2009*x**2 + 5031*x + 74
|
|
c_2 = 9*x**5*y**4 + 12*x**5*y**3 - 45*x**5*y**2 - 108*x**5*y - 324*x**5 + 18*x**4*y**3 - 216*x**4*y**2 - 810*x**4*y + 2*x**3*y**4 + 9*x**3*y**3 - 252*x**3*y**2 - 288*x**3*y - 945*x**3 - 30*x**2*y**2 - 414*x**2*y + 2*x*y**3 - 54*x*y**2 - 3*x*y + 81*x + 12*y
|
|
c_3 = -36*x**4*y**2 - 108*x**4*y - 27*x**3*y**2 - 36*x**3*y - 108*x**3 - 8*x**2*y**2 - 42*x**2*y - 6*x*y**2 + 9*x + 2*y
|
|
|
|
assert R.dmp_zz_diophantine(H_1, c_1, [], 5, p) == [-3*x, -2, 1]
|
|
assert R.dmp_zz_diophantine(H_2, c_2, [ZZ(-14)], 5, p) == [-x*y, -3*x, -6]
|
|
assert R.dmp_zz_diophantine(H_3, c_3, [ZZ(-14)], 5, p) == [0, 0, -1]
|
|
|
|
|
|
def test_issue_6355():
|
|
# This tests a bug in the Wang algorithm that occurred only with a very
|
|
# specific set of random numbers.
|
|
random_sequence = [-1, -1, 0, 0, 0, 0, -1, -1, 0, -1, 3, -1, 3, 3, 3, 3, -1, 3]
|
|
|
|
R, x, y, z = ring("x,y,z", ZZ)
|
|
f = 2*x**2 + y*z - y - z**2 + z
|
|
|
|
assert R.dmp_zz_wang(f, seed=random_sequence) == [f]
|
|
|
|
|
|
def test_dmp_zz_factor():
|
|
R, x = ring("x", ZZ)
|
|
assert R.dmp_zz_factor(0) == (0, [])
|
|
assert R.dmp_zz_factor(7) == (7, [])
|
|
assert R.dmp_zz_factor(-7) == (-7, [])
|
|
|
|
assert R.dmp_zz_factor(x**2 - 9) == (1, [(x - 3, 1), (x + 3, 1)])
|
|
|
|
R, x, y = ring("x,y", ZZ)
|
|
assert R.dmp_zz_factor(0) == (0, [])
|
|
assert R.dmp_zz_factor(7) == (7, [])
|
|
assert R.dmp_zz_factor(-7) == (-7, [])
|
|
|
|
assert R.dmp_zz_factor(x) == (1, [(x, 1)])
|
|
assert R.dmp_zz_factor(4*x) == (4, [(x, 1)])
|
|
assert R.dmp_zz_factor(4*x + 2) == (2, [(2*x + 1, 1)])
|
|
assert R.dmp_zz_factor(x*y + 1) == (1, [(x*y + 1, 1)])
|
|
assert R.dmp_zz_factor(y**2 + 1) == (1, [(y**2 + 1, 1)])
|
|
assert R.dmp_zz_factor(y**2 - 1) == (1, [(y - 1, 1), (y + 1, 1)])
|
|
|
|
assert R.dmp_zz_factor(x**2*y**2 + 6*x**2*y + 9*x**2 - 1) == (1, [(x*y + 3*x - 1, 1), (x*y + 3*x + 1, 1)])
|
|
assert R.dmp_zz_factor(x**2*y**2 - 9) == (1, [(x*y - 3, 1), (x*y + 3, 1)])
|
|
|
|
R, x, y, z = ring("x,y,z", ZZ)
|
|
assert R.dmp_zz_factor(x**2*y**2*z**2 - 9) == \
|
|
(1, [(x*y*z - 3, 1),
|
|
(x*y*z + 3, 1)])
|
|
|
|
R, x, y, z, u = ring("x,y,z,u", ZZ)
|
|
assert R.dmp_zz_factor(x**2*y**2*z**2*u**2 - 9) == \
|
|
(1, [(x*y*z*u - 3, 1),
|
|
(x*y*z*u + 3, 1)])
|
|
|
|
R, x, y, z = ring("x,y,z", ZZ)
|
|
assert R.dmp_zz_factor(f_1) == \
|
|
(1, [(x + y*z + 20, 1),
|
|
(x*y + z + 10, 1),
|
|
(x*z + y + 30, 1)])
|
|
|
|
assert R.dmp_zz_factor(f_2) == \
|
|
(1, [(x**2*y**2 + x**2*z**2 + y + 90, 1),
|
|
(x**3*y + x**3*z + z - 11, 1)])
|
|
|
|
assert R.dmp_zz_factor(f_3) == \
|
|
(1, [(x**2*y**2 + x*z**4 + x + z, 1),
|
|
(x**3 + x*y*z + y**2 + y*z**3, 1)])
|
|
|
|
assert R.dmp_zz_factor(f_4) == \
|
|
(-1, [(x*y**3 + z**2, 1),
|
|
(x**2*z + y**4*z**2 + 5, 1),
|
|
(x**3*y - z**2 - 3, 1),
|
|
(x**3*y**4 + z**2, 1)])
|
|
|
|
assert R.dmp_zz_factor(f_5) == \
|
|
(-1, [(x + y - z, 3)])
|
|
|
|
R, x, y, z, t = ring("x,y,z,t", ZZ)
|
|
assert R.dmp_zz_factor(f_6) == \
|
|
(1, [(47*x*y + z**3*t**2 - t**2, 1),
|
|
(45*x**3 - 9*y**3 - y**2 + 3*z**3 + 2*z*t, 1)])
|
|
|
|
R, x, y, z = ring("x,y,z", ZZ)
|
|
assert R.dmp_zz_factor(w_1) == \
|
|
(1, [(x**2*y**2 - x**2*z**2 + y - z**2, 1),
|
|
(x**2*y*z**2 + 3*x*z + 2*y, 1),
|
|
(4*x**2*y + 4*x**2*z + x*y*z - 1, 1)])
|
|
|
|
R, x, y = ring("x,y", ZZ)
|
|
f = -12*x**16*y + 240*x**12*y**3 - 768*x**10*y**4 + 1080*x**8*y**5 - 768*x**6*y**6 + 240*x**4*y**7 - 12*y**9
|
|
|
|
assert R.dmp_zz_factor(f) == \
|
|
(-12, [(y, 1),
|
|
(x**2 - y, 6),
|
|
(x**4 + 6*x**2*y + y**2, 1)])
|
|
|
|
|
|
def test_dup_qq_i_factor():
|
|
R, x = ring("x", QQ_I)
|
|
i = QQ_I(0, 1)
|
|
|
|
assert R.dup_qq_i_factor(x**2 - 2) == (QQ_I(1, 0), [(x**2 - 2, 1)])
|
|
|
|
assert R.dup_qq_i_factor(x**2 - 1) == (QQ_I(1, 0), [(x - 1, 1), (x + 1, 1)])
|
|
|
|
assert R.dup_qq_i_factor(x**2 + 1) == (QQ_I(1, 0), [(x - i, 1), (x + i, 1)])
|
|
|
|
assert R.dup_qq_i_factor(x**2/4 + 1) == \
|
|
(QQ_I(QQ(1, 4), 0), [(x - 2*i, 1), (x + 2*i, 1)])
|
|
|
|
assert R.dup_qq_i_factor(x**2 + 4) == \
|
|
(QQ_I(1, 0), [(x - 2*i, 1), (x + 2*i, 1)])
|
|
|
|
assert R.dup_qq_i_factor(x**2 + 2*x + 1) == \
|
|
(QQ_I(1, 0), [(x + 1, 2)])
|
|
|
|
assert R.dup_qq_i_factor(x**2 + 2*i*x - 1) == \
|
|
(QQ_I(1, 0), [(x + i, 2)])
|
|
|
|
f = 8192*x**2 + x*(22656 + 175232*i) - 921416 + 242313*i
|
|
|
|
assert R.dup_qq_i_factor(f) == \
|
|
(QQ_I(8192, 0), [(x + QQ_I(QQ(177, 128), QQ(1369, 128)), 2)])
|
|
|
|
|
|
def test_dmp_qq_i_factor():
|
|
R, x, y = ring("x, y", QQ_I)
|
|
i = QQ_I(0, 1)
|
|
|
|
assert R.dmp_qq_i_factor(x**2 + 2*y**2) == \
|
|
(QQ_I(1, 0), [(x**2 + 2*y**2, 1)])
|
|
|
|
assert R.dmp_qq_i_factor(x**2 + y**2) == \
|
|
(QQ_I(1, 0), [(x - i*y, 1), (x + i*y, 1)])
|
|
|
|
assert R.dmp_qq_i_factor(x**2 + y**2/4) == \
|
|
(QQ_I(1, 0), [(x - i*y/2, 1), (x + i*y/2, 1)])
|
|
|
|
assert R.dmp_qq_i_factor(4*x**2 + y**2) == \
|
|
(QQ_I(4, 0), [(x - i*y/2, 1), (x + i*y/2, 1)])
|
|
|
|
|
|
def test_dup_zz_i_factor():
|
|
R, x = ring("x", ZZ_I)
|
|
i = ZZ_I(0, 1)
|
|
|
|
assert R.dup_zz_i_factor(x**2 - 2) == (ZZ_I(1, 0), [(x**2 - 2, 1)])
|
|
|
|
assert R.dup_zz_i_factor(x**2 - 1) == (ZZ_I(1, 0), [(x - 1, 1), (x + 1, 1)])
|
|
|
|
assert R.dup_zz_i_factor(x**2 + 1) == (ZZ_I(1, 0), [(x - i, 1), (x + i, 1)])
|
|
|
|
assert R.dup_zz_i_factor(x**2 + 4) == \
|
|
(ZZ_I(1, 0), [(x - 2*i, 1), (x + 2*i, 1)])
|
|
|
|
assert R.dup_zz_i_factor(x**2 + 2*x + 1) == \
|
|
(ZZ_I(1, 0), [(x + 1, 2)])
|
|
|
|
assert R.dup_zz_i_factor(x**2 + 2*i*x - 1) == \
|
|
(ZZ_I(1, 0), [(x + i, 2)])
|
|
|
|
f = 8192*x**2 + x*(22656 + 175232*i) - 921416 + 242313*i
|
|
|
|
assert R.dup_zz_i_factor(f) == \
|
|
(ZZ_I(0, 1), [((64 - 64*i)*x + (773 + 596*i), 2)])
|
|
|
|
|
|
def test_dmp_zz_i_factor():
|
|
R, x, y = ring("x, y", ZZ_I)
|
|
i = ZZ_I(0, 1)
|
|
|
|
assert R.dmp_zz_i_factor(x**2 + 2*y**2) == \
|
|
(ZZ_I(1, 0), [(x**2 + 2*y**2, 1)])
|
|
|
|
assert R.dmp_zz_i_factor(x**2 + y**2) == \
|
|
(ZZ_I(1, 0), [(x - i*y, 1), (x + i*y, 1)])
|
|
|
|
assert R.dmp_zz_i_factor(4*x**2 + y**2) == \
|
|
(ZZ_I(1, 0), [(2*x - i*y, 1), (2*x + i*y, 1)])
|
|
|
|
|
|
def test_dup_ext_factor():
|
|
R, x = ring("x", QQ.algebraic_field(I))
|
|
def anp(element):
|
|
return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)
|
|
|
|
assert R.dup_ext_factor(0) == (anp([]), [])
|
|
|
|
f = anp([QQ(1)])*x + anp([QQ(1)])
|
|
|
|
assert R.dup_ext_factor(f) == (anp([QQ(1)]), [(f, 1)])
|
|
|
|
g = anp([QQ(2)])*x + anp([QQ(2)])
|
|
|
|
assert R.dup_ext_factor(g) == (anp([QQ(2)]), [(f, 1)])
|
|
|
|
f = anp([QQ(7)])*x**4 + anp([QQ(1, 1)])
|
|
g = anp([QQ(1)])*x**4 + anp([QQ(1, 7)])
|
|
|
|
assert R.dup_ext_factor(f) == (anp([QQ(7)]), [(g, 1)])
|
|
|
|
f = anp([QQ(1)])*x**4 + anp([QQ(1)])
|
|
|
|
assert R.dup_ext_factor(f) == \
|
|
(anp([QQ(1, 1)]), [(anp([QQ(1)])*x**2 + anp([QQ(-1), QQ(0)]), 1),
|
|
(anp([QQ(1)])*x**2 + anp([QQ( 1), QQ(0)]), 1)])
|
|
|
|
f = anp([QQ(4, 1)])*x**2 + anp([QQ(9, 1)])
|
|
|
|
assert R.dup_ext_factor(f) == \
|
|
(anp([QQ(4, 1)]), [(anp([QQ(1, 1)])*x + anp([-QQ(3, 2), QQ(0, 1)]), 1),
|
|
(anp([QQ(1, 1)])*x + anp([ QQ(3, 2), QQ(0, 1)]), 1)])
|
|
|
|
f = anp([QQ(4, 1)])*x**4 + anp([QQ(8, 1)])*x**3 + anp([QQ(77, 1)])*x**2 + anp([QQ(18, 1)])*x + anp([QQ(153, 1)])
|
|
|
|
assert R.dup_ext_factor(f) == \
|
|
(anp([QQ(4, 1)]), [(anp([QQ(1, 1)])*x + anp([-QQ(4, 1), QQ(1, 1)]), 1),
|
|
(anp([QQ(1, 1)])*x + anp([-QQ(3, 2), QQ(0, 1)]), 1),
|
|
(anp([QQ(1, 1)])*x + anp([ QQ(3, 2), QQ(0, 1)]), 1),
|
|
(anp([QQ(1, 1)])*x + anp([ QQ(4, 1), QQ(1, 1)]), 1)])
|
|
|
|
R, x = ring("x", QQ.algebraic_field(sqrt(2)))
|
|
def anp(element):
|
|
return ANP(element, [QQ(1), QQ(0), QQ(-2)], QQ)
|
|
|
|
f = anp([QQ(1)])*x**4 + anp([QQ(1, 1)])
|
|
|
|
assert R.dup_ext_factor(f) == \
|
|
(anp([QQ(1)]), [(anp([QQ(1)])*x**2 + anp([QQ(-1), QQ(0)])*x + anp([QQ(1)]), 1),
|
|
(anp([QQ(1)])*x**2 + anp([QQ( 1), QQ(0)])*x + anp([QQ(1)]), 1)])
|
|
|
|
f = anp([QQ(1, 1)])*x**2 + anp([QQ(2), QQ(0)])*x + anp([QQ(2, 1)])
|
|
|
|
assert R.dup_ext_factor(f) == \
|
|
(anp([QQ(1, 1)]), [(anp([1])*x + anp([1, 0]), 2)])
|
|
|
|
assert R.dup_ext_factor(f**3) == \
|
|
(anp([QQ(1, 1)]), [(anp([1])*x + anp([1, 0]), 6)])
|
|
|
|
f *= anp([QQ(2, 1)])
|
|
|
|
assert R.dup_ext_factor(f) == \
|
|
(anp([QQ(2, 1)]), [(anp([1])*x + anp([1, 0]), 2)])
|
|
|
|
assert R.dup_ext_factor(f**3) == \
|
|
(anp([QQ(8, 1)]), [(anp([1])*x + anp([1, 0]), 6)])
|
|
|
|
|
|
def test_dmp_ext_factor():
|
|
R, x,y = ring("x,y", QQ.algebraic_field(sqrt(2)))
|
|
def anp(x):
|
|
return ANP(x, [QQ(1), QQ(0), QQ(-2)], QQ)
|
|
|
|
assert R.dmp_ext_factor(0) == (anp([]), [])
|
|
|
|
f = anp([QQ(1)])*x + anp([QQ(1)])
|
|
|
|
assert R.dmp_ext_factor(f) == (anp([QQ(1)]), [(f, 1)])
|
|
|
|
g = anp([QQ(2)])*x + anp([QQ(2)])
|
|
|
|
assert R.dmp_ext_factor(g) == (anp([QQ(2)]), [(f, 1)])
|
|
|
|
f = anp([QQ(1)])*x**2 + anp([QQ(-2)])*y**2
|
|
|
|
assert R.dmp_ext_factor(f) == \
|
|
(anp([QQ(1)]), [(anp([QQ(1)])*x + anp([QQ(-1), QQ(0)])*y, 1),
|
|
(anp([QQ(1)])*x + anp([QQ( 1), QQ(0)])*y, 1)])
|
|
|
|
f = anp([QQ(2)])*x**2 + anp([QQ(-4)])*y**2
|
|
|
|
assert R.dmp_ext_factor(f) == \
|
|
(anp([QQ(2)]), [(anp([QQ(1)])*x + anp([QQ(-1), QQ(0)])*y, 1),
|
|
(anp([QQ(1)])*x + anp([QQ( 1), QQ(0)])*y, 1)])
|
|
|
|
|
|
def test_dup_factor_list():
|
|
R, x = ring("x", ZZ)
|
|
assert R.dup_factor_list(0) == (0, [])
|
|
assert R.dup_factor_list(7) == (7, [])
|
|
|
|
R, x = ring("x", QQ)
|
|
assert R.dup_factor_list(0) == (0, [])
|
|
assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
|
|
|
|
R, x = ring("x", ZZ['t'])
|
|
assert R.dup_factor_list(0) == (0, [])
|
|
assert R.dup_factor_list(7) == (7, [])
|
|
|
|
R, x = ring("x", QQ['t'])
|
|
assert R.dup_factor_list(0) == (0, [])
|
|
assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
|
|
|
|
R, x = ring("x", ZZ)
|
|
assert R.dup_factor_list_include(0) == [(0, 1)]
|
|
assert R.dup_factor_list_include(7) == [(7, 1)]
|
|
|
|
assert R.dup_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
|
|
assert R.dup_factor_list_include(x**2 + 2*x + 1) == [(x + 1, 2)]
|
|
# issue 8037
|
|
assert R.dup_factor_list(6*x**2 - 5*x - 6) == (1, [(2*x - 3, 1), (3*x + 2, 1)])
|
|
|
|
R, x = ring("x", QQ)
|
|
assert R.dup_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1, 2), [(x + 1, 2)])
|
|
|
|
R, x = ring("x", FF(2))
|
|
assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)])
|
|
|
|
R, x = ring("x", RR)
|
|
assert R.dup_factor_list(1.0*x**2 + 2.0*x + 1.0) == (1.0, [(1.0*x + 1.0, 2)])
|
|
assert R.dup_factor_list(2.0*x**2 + 4.0*x + 2.0) == (2.0, [(1.0*x + 1.0, 2)])
|
|
|
|
f = 6.7225336055071*x**2 - 10.6463972754741*x - 0.33469524022264
|
|
coeff, factors = R.dup_factor_list(f)
|
|
assert coeff == RR(10.6463972754741)
|
|
assert len(factors) == 1
|
|
assert factors[0][0].max_norm() == RR(1.0)
|
|
assert factors[0][1] == 1
|
|
|
|
Rt, t = ring("t", ZZ)
|
|
R, x = ring("x", Rt)
|
|
|
|
f = 4*t*x**2 + 4*t**2*x
|
|
|
|
assert R.dup_factor_list(f) == \
|
|
(4*t, [(x, 1),
|
|
(x + t, 1)])
|
|
|
|
Rt, t = ring("t", QQ)
|
|
R, x = ring("x", Rt)
|
|
|
|
f = QQ(1, 2)*t*x**2 + QQ(1, 2)*t**2*x
|
|
|
|
assert R.dup_factor_list(f) == \
|
|
(QQ(1, 2)*t, [(x, 1),
|
|
(x + t, 1)])
|
|
|
|
R, x = ring("x", QQ.algebraic_field(I))
|
|
def anp(element):
|
|
return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)
|
|
|
|
f = anp([QQ(1, 1)])*x**4 + anp([QQ(2, 1)])*x**2
|
|
|
|
assert R.dup_factor_list(f) == \
|
|
(anp([QQ(1, 1)]), [(anp([QQ(1, 1)])*x, 2),
|
|
(anp([QQ(1, 1)])*x**2 + anp([])*x + anp([QQ(2, 1)]), 1)])
|
|
|
|
R, x = ring("x", EX)
|
|
raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))
|
|
|
|
|
|
def test_dmp_factor_list():
|
|
R, x, y = ring("x,y", ZZ)
|
|
assert R.dmp_factor_list(0) == (ZZ(0), [])
|
|
assert R.dmp_factor_list(7) == (7, [])
|
|
|
|
R, x, y = ring("x,y", QQ)
|
|
assert R.dmp_factor_list(0) == (QQ(0), [])
|
|
assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
|
|
|
|
Rt, t = ring("t", ZZ)
|
|
R, x, y = ring("x,y", Rt)
|
|
assert R.dmp_factor_list(0) == (0, [])
|
|
assert R.dmp_factor_list(7) == (ZZ(7), [])
|
|
|
|
Rt, t = ring("t", QQ)
|
|
R, x, y = ring("x,y", Rt)
|
|
assert R.dmp_factor_list(0) == (0, [])
|
|
assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
|
|
|
|
R, x, y = ring("x,y", ZZ)
|
|
assert R.dmp_factor_list_include(0) == [(0, 1)]
|
|
assert R.dmp_factor_list_include(7) == [(7, 1)]
|
|
|
|
R, X = xring("x:200", ZZ)
|
|
|
|
f, g = X[0]**2 + 2*X[0] + 1, X[0] + 1
|
|
assert R.dmp_factor_list(f) == (1, [(g, 2)])
|
|
|
|
f, g = X[-1]**2 + 2*X[-1] + 1, X[-1] + 1
|
|
assert R.dmp_factor_list(f) == (1, [(g, 2)])
|
|
|
|
R, x = ring("x", ZZ)
|
|
assert R.dmp_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
|
|
R, x = ring("x", QQ)
|
|
assert R.dmp_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1,2), [(x + 1, 2)])
|
|
|
|
R, x, y = ring("x,y", ZZ)
|
|
assert R.dmp_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
|
|
R, x, y = ring("x,y", QQ)
|
|
assert R.dmp_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1,2), [(x + 1, 2)])
|
|
|
|
R, x, y = ring("x,y", ZZ)
|
|
f = 4*x**2*y + 4*x*y**2
|
|
|
|
assert R.dmp_factor_list(f) == \
|
|
(4, [(y, 1),
|
|
(x, 1),
|
|
(x + y, 1)])
|
|
|
|
assert R.dmp_factor_list_include(f) == \
|
|
[(4*y, 1),
|
|
(x, 1),
|
|
(x + y, 1)]
|
|
|
|
R, x, y = ring("x,y", QQ)
|
|
f = QQ(1,2)*x**2*y + QQ(1,2)*x*y**2
|
|
|
|
assert R.dmp_factor_list(f) == \
|
|
(QQ(1,2), [(y, 1),
|
|
(x, 1),
|
|
(x + y, 1)])
|
|
|
|
R, x, y = ring("x,y", RR)
|
|
f = 2.0*x**2 - 8.0*y**2
|
|
|
|
assert R.dmp_factor_list(f) == \
|
|
(RR(8.0), [(0.5*x - y, 1),
|
|
(0.5*x + y, 1)])
|
|
|
|
f = 6.7225336055071*x**2*y**2 - 10.6463972754741*x*y - 0.33469524022264
|
|
coeff, factors = R.dmp_factor_list(f)
|
|
assert coeff == RR(10.6463972754741)
|
|
assert len(factors) == 1
|
|
assert factors[0][0].max_norm() == RR(1.0)
|
|
assert factors[0][1] == 1
|
|
|
|
Rt, t = ring("t", ZZ)
|
|
R, x, y = ring("x,y", Rt)
|
|
f = 4*t*x**2 + 4*t**2*x
|
|
|
|
assert R.dmp_factor_list(f) == \
|
|
(4*t, [(x, 1),
|
|
(x + t, 1)])
|
|
|
|
Rt, t = ring("t", QQ)
|
|
R, x, y = ring("x,y", Rt)
|
|
f = QQ(1, 2)*t*x**2 + QQ(1, 2)*t**2*x
|
|
|
|
assert R.dmp_factor_list(f) == \
|
|
(QQ(1, 2)*t, [(x, 1),
|
|
(x + t, 1)])
|
|
|
|
R, x, y = ring("x,y", FF(2))
|
|
raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2))
|
|
|
|
R, x, y = ring("x,y", EX)
|
|
raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
|
|
|
|
|
|
def test_dup_irreducible_p():
|
|
R, x = ring("x", ZZ)
|
|
assert R.dup_irreducible_p(x**2 + x + 1) is True
|
|
assert R.dup_irreducible_p(x**2 + 2*x + 1) is False
|
|
|
|
|
|
def test_dmp_irreducible_p():
|
|
R, x, y = ring("x,y", ZZ)
|
|
assert R.dmp_irreducible_p(x**2 + x + 1) is True
|
|
assert R.dmp_irreducible_p(x**2 + 2*x + 1) is False
|