854 lines
35 KiB
Python
854 lines
35 KiB
Python
from sympy.core.add import Add
|
|
from sympy.core.expr import Expr
|
|
from sympy.core.function import (Function, Lambda, diff)
|
|
from sympy.core.mod import Mod
|
|
from sympy.core import (Catalan, EulerGamma, GoldenRatio)
|
|
from sympy.core.numbers import (E, Float, I, Integer, Rational, pi)
|
|
from sympy.core.relational import Eq
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import (Dummy, symbols)
|
|
from sympy.functions.combinatorial.factorials import factorial
|
|
from sympy.functions.elementary.complexes import (conjugate, sign)
|
|
from sympy.functions.elementary.exponential import (exp, log)
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
|
|
from sympy.functions.special.gamma_functions import gamma
|
|
from sympy.integrals.integrals import Integral
|
|
from sympy.sets.fancysets import Range
|
|
|
|
from sympy.codegen import For, Assignment, aug_assign
|
|
from sympy.codegen.ast import Declaration, Variable, float32, float64, \
|
|
value_const, real, bool_, While, FunctionPrototype, FunctionDefinition, \
|
|
integer, Return, Element
|
|
from sympy.core.expr import UnevaluatedExpr
|
|
from sympy.core.relational import Relational
|
|
from sympy.logic.boolalg import And, Or, Not, Equivalent, Xor
|
|
from sympy.matrices import Matrix, MatrixSymbol
|
|
from sympy.printing.fortran import fcode, FCodePrinter
|
|
from sympy.tensor import IndexedBase, Idx
|
|
from sympy.tensor.array.expressions import ArraySymbol, ArrayElement
|
|
from sympy.utilities.lambdify import implemented_function
|
|
from sympy.testing.pytest import raises
|
|
|
|
|
|
def test_UnevaluatedExpr():
|
|
p, q, r = symbols("p q r", real=True)
|
|
q_r = UnevaluatedExpr(q + r)
|
|
expr = abs(exp(p+q_r))
|
|
assert fcode(expr, source_format="free") == "exp(p + (q + r))"
|
|
x, y, z = symbols("x y z")
|
|
y_z = UnevaluatedExpr(y + z)
|
|
expr2 = abs(exp(x+y_z))
|
|
assert fcode(expr2, human=False)[2].lstrip() == "exp(re(x) + re(y + z))"
|
|
assert fcode(expr2, user_functions={"re": "realpart"}).lstrip() == "exp(realpart(x) + realpart(y + z))"
|
|
|
|
|
|
def test_printmethod():
|
|
x = symbols('x')
|
|
|
|
class nint(Function):
|
|
def _fcode(self, printer):
|
|
return "nint(%s)" % printer._print(self.args[0])
|
|
assert fcode(nint(x)) == " nint(x)"
|
|
|
|
|
|
def test_fcode_sign(): #issue 12267
|
|
x=symbols('x')
|
|
y=symbols('y', integer=True)
|
|
z=symbols('z', complex=True)
|
|
assert fcode(sign(x), standard=95, source_format='free') == "merge(0d0, dsign(1d0, x), x == 0d0)"
|
|
assert fcode(sign(y), standard=95, source_format='free') == "merge(0, isign(1, y), y == 0)"
|
|
assert fcode(sign(z), standard=95, source_format='free') == "merge(cmplx(0d0, 0d0), z/abs(z), abs(z) == 0d0)"
|
|
raises(NotImplementedError, lambda: fcode(sign(x)))
|
|
|
|
|
|
def test_fcode_Pow():
|
|
x, y = symbols('x,y')
|
|
n = symbols('n', integer=True)
|
|
|
|
assert fcode(x**3) == " x**3"
|
|
assert fcode(x**(y**3)) == " x**(y**3)"
|
|
assert fcode(1/(sin(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
|
" (3.5d0*sin(x))**(-x + y**x)/(x**2 + y)"
|
|
assert fcode(sqrt(x)) == ' sqrt(x)'
|
|
assert fcode(sqrt(n)) == ' sqrt(dble(n))'
|
|
assert fcode(x**0.5) == ' sqrt(x)'
|
|
assert fcode(sqrt(x)) == ' sqrt(x)'
|
|
assert fcode(sqrt(10)) == ' sqrt(10.0d0)'
|
|
assert fcode(x**-1.0) == ' 1d0/x'
|
|
assert fcode(x**-2.0, 'y', source_format='free') == 'y = x**(-2.0d0)' # 2823
|
|
assert fcode(x**Rational(3, 7)) == ' x**(3.0d0/7.0d0)'
|
|
|
|
|
|
def test_fcode_Rational():
|
|
x = symbols('x')
|
|
assert fcode(Rational(3, 7)) == " 3.0d0/7.0d0"
|
|
assert fcode(Rational(18, 9)) == " 2"
|
|
assert fcode(Rational(3, -7)) == " -3.0d0/7.0d0"
|
|
assert fcode(Rational(-3, -7)) == " 3.0d0/7.0d0"
|
|
assert fcode(x + Rational(3, 7)) == " x + 3.0d0/7.0d0"
|
|
assert fcode(Rational(3, 7)*x) == " (3.0d0/7.0d0)*x"
|
|
|
|
|
|
def test_fcode_Integer():
|
|
assert fcode(Integer(67)) == " 67"
|
|
assert fcode(Integer(-1)) == " -1"
|
|
|
|
|
|
def test_fcode_Float():
|
|
assert fcode(Float(42.0)) == " 42.0000000000000d0"
|
|
assert fcode(Float(-1e20)) == " -1.00000000000000d+20"
|
|
|
|
|
|
def test_fcode_functions():
|
|
x, y = symbols('x,y')
|
|
assert fcode(sin(x) ** cos(y)) == " sin(x)**cos(y)"
|
|
raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=66))
|
|
raises(NotImplementedError, lambda: fcode(x % y, standard=66))
|
|
raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=77))
|
|
raises(NotImplementedError, lambda: fcode(x % y, standard=77))
|
|
for standard in [90, 95, 2003, 2008]:
|
|
assert fcode(Mod(x, y), standard=standard) == " modulo(x, y)"
|
|
assert fcode(x % y, standard=standard) == " modulo(x, y)"
|
|
|
|
|
|
def test_case():
|
|
ob = FCodePrinter()
|
|
x,x_,x__,y,X,X_,Y = symbols('x,x_,x__,y,X,X_,Y')
|
|
assert fcode(exp(x_) + sin(x*y) + cos(X*Y)) == \
|
|
' exp(x_) + sin(x*y) + cos(X__*Y_)'
|
|
assert fcode(exp(x__) + 2*x*Y*X_**Rational(7, 2)) == \
|
|
' 2*X_**(7.0d0/2.0d0)*Y*x + exp(x__)'
|
|
assert fcode(exp(x_) + sin(x*y) + cos(X*Y), name_mangling=False) == \
|
|
' exp(x_) + sin(x*y) + cos(X*Y)'
|
|
assert fcode(x - cos(X), name_mangling=False) == ' x - cos(X)'
|
|
assert ob.doprint(X*sin(x) + x_, assign_to='me') == ' me = X*sin(x_) + x__'
|
|
assert ob.doprint(X*sin(x), assign_to='mu') == ' mu = X*sin(x_)'
|
|
assert ob.doprint(x_, assign_to='ad') == ' ad = x__'
|
|
n, m = symbols('n,m', integer=True)
|
|
A = IndexedBase('A')
|
|
x = IndexedBase('x')
|
|
y = IndexedBase('y')
|
|
i = Idx('i', m)
|
|
I = Idx('I', n)
|
|
assert fcode(A[i, I]*x[I], assign_to=y[i], source_format='free') == (
|
|
"do i = 1, m\n"
|
|
" y(i) = 0\n"
|
|
"end do\n"
|
|
"do i = 1, m\n"
|
|
" do I_ = 1, n\n"
|
|
" y(i) = A(i, I_)*x(I_) + y(i)\n"
|
|
" end do\n"
|
|
"end do" )
|
|
|
|
|
|
#issue 6814
|
|
def test_fcode_functions_with_integers():
|
|
x= symbols('x')
|
|
log10_17 = log(10).evalf(17)
|
|
loglog10_17 = '0.8340324452479558d0'
|
|
assert fcode(x * log(10)) == " x*%sd0" % log10_17
|
|
assert fcode(x * log(10)) == " x*%sd0" % log10_17
|
|
assert fcode(x * log(S(10))) == " x*%sd0" % log10_17
|
|
assert fcode(log(S(10))) == " %sd0" % log10_17
|
|
assert fcode(exp(10)) == " %sd0" % exp(10).evalf(17)
|
|
assert fcode(x * log(log(10))) == " x*%s" % loglog10_17
|
|
assert fcode(x * log(log(S(10)))) == " x*%s" % loglog10_17
|
|
|
|
|
|
def test_fcode_NumberSymbol():
|
|
prec = 17
|
|
p = FCodePrinter()
|
|
assert fcode(Catalan) == ' parameter (Catalan = %sd0)\n Catalan' % Catalan.evalf(prec)
|
|
assert fcode(EulerGamma) == ' parameter (EulerGamma = %sd0)\n EulerGamma' % EulerGamma.evalf(prec)
|
|
assert fcode(E) == ' parameter (E = %sd0)\n E' % E.evalf(prec)
|
|
assert fcode(GoldenRatio) == ' parameter (GoldenRatio = %sd0)\n GoldenRatio' % GoldenRatio.evalf(prec)
|
|
assert fcode(pi) == ' parameter (pi = %sd0)\n pi' % pi.evalf(prec)
|
|
assert fcode(
|
|
pi, precision=5) == ' parameter (pi = %sd0)\n pi' % pi.evalf(5)
|
|
assert fcode(Catalan, human=False) == ({
|
|
(Catalan, p._print(Catalan.evalf(prec)))}, set(), ' Catalan')
|
|
assert fcode(EulerGamma, human=False) == ({(EulerGamma, p._print(
|
|
EulerGamma.evalf(prec)))}, set(), ' EulerGamma')
|
|
assert fcode(E, human=False) == (
|
|
{(E, p._print(E.evalf(prec)))}, set(), ' E')
|
|
assert fcode(GoldenRatio, human=False) == ({(GoldenRatio, p._print(
|
|
GoldenRatio.evalf(prec)))}, set(), ' GoldenRatio')
|
|
assert fcode(pi, human=False) == (
|
|
{(pi, p._print(pi.evalf(prec)))}, set(), ' pi')
|
|
assert fcode(pi, precision=5, human=False) == (
|
|
{(pi, p._print(pi.evalf(5)))}, set(), ' pi')
|
|
|
|
|
|
def test_fcode_complex():
|
|
assert fcode(I) == " cmplx(0,1)"
|
|
x = symbols('x')
|
|
assert fcode(4*I) == " cmplx(0,4)"
|
|
assert fcode(3 + 4*I) == " cmplx(3,4)"
|
|
assert fcode(3 + 4*I + x) == " cmplx(3,4) + x"
|
|
assert fcode(I*x) == " cmplx(0,1)*x"
|
|
assert fcode(3 + 4*I - x) == " cmplx(3,4) - x"
|
|
x = symbols('x', imaginary=True)
|
|
assert fcode(5*x) == " 5*x"
|
|
assert fcode(I*x) == " cmplx(0,1)*x"
|
|
assert fcode(3 + x) == " x + 3"
|
|
|
|
|
|
def test_implicit():
|
|
x, y = symbols('x,y')
|
|
assert fcode(sin(x)) == " sin(x)"
|
|
assert fcode(atan2(x, y)) == " atan2(x, y)"
|
|
assert fcode(conjugate(x)) == " conjg(x)"
|
|
|
|
|
|
def test_not_fortran():
|
|
x = symbols('x')
|
|
g = Function('g')
|
|
gamma_f = fcode(gamma(x))
|
|
assert gamma_f == "C Not supported in Fortran:\nC gamma\n gamma(x)"
|
|
assert fcode(Integral(sin(x))) == "C Not supported in Fortran:\nC Integral\n Integral(sin(x), x)"
|
|
assert fcode(g(x)) == "C Not supported in Fortran:\nC g\n g(x)"
|
|
|
|
|
|
def test_user_functions():
|
|
x = symbols('x')
|
|
assert fcode(sin(x), user_functions={"sin": "zsin"}) == " zsin(x)"
|
|
x = symbols('x')
|
|
assert fcode(
|
|
gamma(x), user_functions={"gamma": "mygamma"}) == " mygamma(x)"
|
|
g = Function('g')
|
|
assert fcode(g(x), user_functions={"g": "great"}) == " great(x)"
|
|
n = symbols('n', integer=True)
|
|
assert fcode(
|
|
factorial(n), user_functions={"factorial": "fct"}) == " fct(n)"
|
|
|
|
|
|
def test_inline_function():
|
|
x = symbols('x')
|
|
g = implemented_function('g', Lambda(x, 2*x))
|
|
assert fcode(g(x)) == " 2*x"
|
|
g = implemented_function('g', Lambda(x, 2*pi/x))
|
|
assert fcode(g(x)) == (
|
|
" parameter (pi = %sd0)\n"
|
|
" 2*pi/x"
|
|
) % pi.evalf(17)
|
|
A = IndexedBase('A')
|
|
i = Idx('i', symbols('n', integer=True))
|
|
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
|
|
assert fcode(g(A[i]), assign_to=A[i]) == (
|
|
" do i = 1, n\n"
|
|
" A(i) = (A(i) + 1)*(A(i) + 2)*A(i)\n"
|
|
" end do"
|
|
)
|
|
|
|
|
|
def test_assign_to():
|
|
x = symbols('x')
|
|
assert fcode(sin(x), assign_to="s") == " s = sin(x)"
|
|
|
|
|
|
def test_line_wrapping():
|
|
x, y = symbols('x,y')
|
|
assert fcode(((x + y)**10).expand(), assign_to="var") == (
|
|
" var = x**10 + 10*x**9*y + 45*x**8*y**2 + 120*x**7*y**3 + 210*x**6*\n"
|
|
" @ y**4 + 252*x**5*y**5 + 210*x**4*y**6 + 120*x**3*y**7 + 45*x**2*y\n"
|
|
" @ **8 + 10*x*y**9 + y**10"
|
|
)
|
|
e = [x**i for i in range(11)]
|
|
assert fcode(Add(*e)) == (
|
|
" x**10 + x**9 + x**8 + x**7 + x**6 + x**5 + x**4 + x**3 + x**2 + x\n"
|
|
" @ + 1"
|
|
)
|
|
|
|
|
|
def test_fcode_precedence():
|
|
x, y = symbols("x y")
|
|
assert fcode(And(x < y, y < x + 1), source_format="free") == \
|
|
"x < y .and. y < x + 1"
|
|
assert fcode(Or(x < y, y < x + 1), source_format="free") == \
|
|
"x < y .or. y < x + 1"
|
|
assert fcode(Xor(x < y, y < x + 1, evaluate=False),
|
|
source_format="free") == "x < y .neqv. y < x + 1"
|
|
assert fcode(Equivalent(x < y, y < x + 1), source_format="free") == \
|
|
"x < y .eqv. y < x + 1"
|
|
|
|
|
|
def test_fcode_Logical():
|
|
x, y, z = symbols("x y z")
|
|
# unary Not
|
|
assert fcode(Not(x), source_format="free") == ".not. x"
|
|
# binary And
|
|
assert fcode(And(x, y), source_format="free") == "x .and. y"
|
|
assert fcode(And(x, Not(y)), source_format="free") == "x .and. .not. y"
|
|
assert fcode(And(Not(x), y), source_format="free") == "y .and. .not. x"
|
|
assert fcode(And(Not(x), Not(y)), source_format="free") == \
|
|
".not. x .and. .not. y"
|
|
assert fcode(Not(And(x, y), evaluate=False), source_format="free") == \
|
|
".not. (x .and. y)"
|
|
# binary Or
|
|
assert fcode(Or(x, y), source_format="free") == "x .or. y"
|
|
assert fcode(Or(x, Not(y)), source_format="free") == "x .or. .not. y"
|
|
assert fcode(Or(Not(x), y), source_format="free") == "y .or. .not. x"
|
|
assert fcode(Or(Not(x), Not(y)), source_format="free") == \
|
|
".not. x .or. .not. y"
|
|
assert fcode(Not(Or(x, y), evaluate=False), source_format="free") == \
|
|
".not. (x .or. y)"
|
|
# mixed And/Or
|
|
assert fcode(And(Or(y, z), x), source_format="free") == "x .and. (y .or. z)"
|
|
assert fcode(And(Or(z, x), y), source_format="free") == "y .and. (x .or. z)"
|
|
assert fcode(And(Or(x, y), z), source_format="free") == "z .and. (x .or. y)"
|
|
assert fcode(Or(And(y, z), x), source_format="free") == "x .or. y .and. z"
|
|
assert fcode(Or(And(z, x), y), source_format="free") == "y .or. x .and. z"
|
|
assert fcode(Or(And(x, y), z), source_format="free") == "z .or. x .and. y"
|
|
# trinary And
|
|
assert fcode(And(x, y, z), source_format="free") == "x .and. y .and. z"
|
|
assert fcode(And(x, y, Not(z)), source_format="free") == \
|
|
"x .and. y .and. .not. z"
|
|
assert fcode(And(x, Not(y), z), source_format="free") == \
|
|
"x .and. z .and. .not. y"
|
|
assert fcode(And(Not(x), y, z), source_format="free") == \
|
|
"y .and. z .and. .not. x"
|
|
assert fcode(Not(And(x, y, z), evaluate=False), source_format="free") == \
|
|
".not. (x .and. y .and. z)"
|
|
# trinary Or
|
|
assert fcode(Or(x, y, z), source_format="free") == "x .or. y .or. z"
|
|
assert fcode(Or(x, y, Not(z)), source_format="free") == \
|
|
"x .or. y .or. .not. z"
|
|
assert fcode(Or(x, Not(y), z), source_format="free") == \
|
|
"x .or. z .or. .not. y"
|
|
assert fcode(Or(Not(x), y, z), source_format="free") == \
|
|
"y .or. z .or. .not. x"
|
|
assert fcode(Not(Or(x, y, z), evaluate=False), source_format="free") == \
|
|
".not. (x .or. y .or. z)"
|
|
|
|
|
|
def test_fcode_Xlogical():
|
|
x, y, z = symbols("x y z")
|
|
# binary Xor
|
|
assert fcode(Xor(x, y, evaluate=False), source_format="free") == \
|
|
"x .neqv. y"
|
|
assert fcode(Xor(x, Not(y), evaluate=False), source_format="free") == \
|
|
"x .neqv. .not. y"
|
|
assert fcode(Xor(Not(x), y, evaluate=False), source_format="free") == \
|
|
"y .neqv. .not. x"
|
|
assert fcode(Xor(Not(x), Not(y), evaluate=False),
|
|
source_format="free") == ".not. x .neqv. .not. y"
|
|
assert fcode(Not(Xor(x, y, evaluate=False), evaluate=False),
|
|
source_format="free") == ".not. (x .neqv. y)"
|
|
# binary Equivalent
|
|
assert fcode(Equivalent(x, y), source_format="free") == "x .eqv. y"
|
|
assert fcode(Equivalent(x, Not(y)), source_format="free") == \
|
|
"x .eqv. .not. y"
|
|
assert fcode(Equivalent(Not(x), y), source_format="free") == \
|
|
"y .eqv. .not. x"
|
|
assert fcode(Equivalent(Not(x), Not(y)), source_format="free") == \
|
|
".not. x .eqv. .not. y"
|
|
assert fcode(Not(Equivalent(x, y), evaluate=False),
|
|
source_format="free") == ".not. (x .eqv. y)"
|
|
# mixed And/Equivalent
|
|
assert fcode(Equivalent(And(y, z), x), source_format="free") == \
|
|
"x .eqv. y .and. z"
|
|
assert fcode(Equivalent(And(z, x), y), source_format="free") == \
|
|
"y .eqv. x .and. z"
|
|
assert fcode(Equivalent(And(x, y), z), source_format="free") == \
|
|
"z .eqv. x .and. y"
|
|
assert fcode(And(Equivalent(y, z), x), source_format="free") == \
|
|
"x .and. (y .eqv. z)"
|
|
assert fcode(And(Equivalent(z, x), y), source_format="free") == \
|
|
"y .and. (x .eqv. z)"
|
|
assert fcode(And(Equivalent(x, y), z), source_format="free") == \
|
|
"z .and. (x .eqv. y)"
|
|
# mixed Or/Equivalent
|
|
assert fcode(Equivalent(Or(y, z), x), source_format="free") == \
|
|
"x .eqv. y .or. z"
|
|
assert fcode(Equivalent(Or(z, x), y), source_format="free") == \
|
|
"y .eqv. x .or. z"
|
|
assert fcode(Equivalent(Or(x, y), z), source_format="free") == \
|
|
"z .eqv. x .or. y"
|
|
assert fcode(Or(Equivalent(y, z), x), source_format="free") == \
|
|
"x .or. (y .eqv. z)"
|
|
assert fcode(Or(Equivalent(z, x), y), source_format="free") == \
|
|
"y .or. (x .eqv. z)"
|
|
assert fcode(Or(Equivalent(x, y), z), source_format="free") == \
|
|
"z .or. (x .eqv. y)"
|
|
# mixed Xor/Equivalent
|
|
assert fcode(Equivalent(Xor(y, z, evaluate=False), x),
|
|
source_format="free") == "x .eqv. (y .neqv. z)"
|
|
assert fcode(Equivalent(Xor(z, x, evaluate=False), y),
|
|
source_format="free") == "y .eqv. (x .neqv. z)"
|
|
assert fcode(Equivalent(Xor(x, y, evaluate=False), z),
|
|
source_format="free") == "z .eqv. (x .neqv. y)"
|
|
assert fcode(Xor(Equivalent(y, z), x, evaluate=False),
|
|
source_format="free") == "x .neqv. (y .eqv. z)"
|
|
assert fcode(Xor(Equivalent(z, x), y, evaluate=False),
|
|
source_format="free") == "y .neqv. (x .eqv. z)"
|
|
assert fcode(Xor(Equivalent(x, y), z, evaluate=False),
|
|
source_format="free") == "z .neqv. (x .eqv. y)"
|
|
# mixed And/Xor
|
|
assert fcode(Xor(And(y, z), x, evaluate=False), source_format="free") == \
|
|
"x .neqv. y .and. z"
|
|
assert fcode(Xor(And(z, x), y, evaluate=False), source_format="free") == \
|
|
"y .neqv. x .and. z"
|
|
assert fcode(Xor(And(x, y), z, evaluate=False), source_format="free") == \
|
|
"z .neqv. x .and. y"
|
|
assert fcode(And(Xor(y, z, evaluate=False), x), source_format="free") == \
|
|
"x .and. (y .neqv. z)"
|
|
assert fcode(And(Xor(z, x, evaluate=False), y), source_format="free") == \
|
|
"y .and. (x .neqv. z)"
|
|
assert fcode(And(Xor(x, y, evaluate=False), z), source_format="free") == \
|
|
"z .and. (x .neqv. y)"
|
|
# mixed Or/Xor
|
|
assert fcode(Xor(Or(y, z), x, evaluate=False), source_format="free") == \
|
|
"x .neqv. y .or. z"
|
|
assert fcode(Xor(Or(z, x), y, evaluate=False), source_format="free") == \
|
|
"y .neqv. x .or. z"
|
|
assert fcode(Xor(Or(x, y), z, evaluate=False), source_format="free") == \
|
|
"z .neqv. x .or. y"
|
|
assert fcode(Or(Xor(y, z, evaluate=False), x), source_format="free") == \
|
|
"x .or. (y .neqv. z)"
|
|
assert fcode(Or(Xor(z, x, evaluate=False), y), source_format="free") == \
|
|
"y .or. (x .neqv. z)"
|
|
assert fcode(Or(Xor(x, y, evaluate=False), z), source_format="free") == \
|
|
"z .or. (x .neqv. y)"
|
|
# trinary Xor
|
|
assert fcode(Xor(x, y, z, evaluate=False), source_format="free") == \
|
|
"x .neqv. y .neqv. z"
|
|
assert fcode(Xor(x, y, Not(z), evaluate=False), source_format="free") == \
|
|
"x .neqv. y .neqv. .not. z"
|
|
assert fcode(Xor(x, Not(y), z, evaluate=False), source_format="free") == \
|
|
"x .neqv. z .neqv. .not. y"
|
|
assert fcode(Xor(Not(x), y, z, evaluate=False), source_format="free") == \
|
|
"y .neqv. z .neqv. .not. x"
|
|
|
|
|
|
def test_fcode_Relational():
|
|
x, y = symbols("x y")
|
|
assert fcode(Relational(x, y, "=="), source_format="free") == "x == y"
|
|
assert fcode(Relational(x, y, "!="), source_format="free") == "x /= y"
|
|
assert fcode(Relational(x, y, ">="), source_format="free") == "x >= y"
|
|
assert fcode(Relational(x, y, "<="), source_format="free") == "x <= y"
|
|
assert fcode(Relational(x, y, ">"), source_format="free") == "x > y"
|
|
assert fcode(Relational(x, y, "<"), source_format="free") == "x < y"
|
|
|
|
|
|
def test_fcode_Piecewise():
|
|
x = symbols('x')
|
|
expr = Piecewise((x, x < 1), (x**2, True))
|
|
# Check that inline conditional (merge) fails if standard isn't 95+
|
|
raises(NotImplementedError, lambda: fcode(expr))
|
|
code = fcode(expr, standard=95)
|
|
expected = " merge(x, x**2, x < 1)"
|
|
assert code == expected
|
|
assert fcode(Piecewise((x, x < 1), (x**2, True)), assign_to="var") == (
|
|
" if (x < 1) then\n"
|
|
" var = x\n"
|
|
" else\n"
|
|
" var = x**2\n"
|
|
" end if"
|
|
)
|
|
a = cos(x)/x
|
|
b = sin(x)/x
|
|
for i in range(10):
|
|
a = diff(a, x)
|
|
b = diff(b, x)
|
|
expected = (
|
|
" if (x < 0) then\n"
|
|
" weird_name = -cos(x)/x + 10*sin(x)/x**2 + 90*cos(x)/x**3 - 720*\n"
|
|
" @ sin(x)/x**4 - 5040*cos(x)/x**5 + 30240*sin(x)/x**6 + 151200*cos(x\n"
|
|
" @ )/x**7 - 604800*sin(x)/x**8 - 1814400*cos(x)/x**9 + 3628800*sin(x\n"
|
|
" @ )/x**10 + 3628800*cos(x)/x**11\n"
|
|
" else\n"
|
|
" weird_name = -sin(x)/x - 10*cos(x)/x**2 + 90*sin(x)/x**3 + 720*\n"
|
|
" @ cos(x)/x**4 - 5040*sin(x)/x**5 - 30240*cos(x)/x**6 + 151200*sin(x\n"
|
|
" @ )/x**7 + 604800*cos(x)/x**8 - 1814400*sin(x)/x**9 - 3628800*cos(x\n"
|
|
" @ )/x**10 + 3628800*sin(x)/x**11\n"
|
|
" end if"
|
|
)
|
|
code = fcode(Piecewise((a, x < 0), (b, True)), assign_to="weird_name")
|
|
assert code == expected
|
|
code = fcode(Piecewise((x, x < 1), (x**2, x > 1), (sin(x), True)), standard=95)
|
|
expected = " merge(x, merge(x**2, sin(x), x > 1), x < 1)"
|
|
assert code == expected
|
|
# Check that Piecewise without a True (default) condition error
|
|
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
|
raises(ValueError, lambda: fcode(expr))
|
|
|
|
|
|
def test_wrap_fortran():
|
|
# "########################################################################"
|
|
printer = FCodePrinter()
|
|
lines = [
|
|
"C This is a long comment on a single line that must be wrapped properly to produce nice output",
|
|
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly",
|
|
]
|
|
wrapped_lines = printer._wrap_fortran(lines)
|
|
expected_lines = [
|
|
"C This is a long comment on a single line that must be wrapped",
|
|
"C properly to produce nice output",
|
|
" this = is + a + long + and + nasty + fortran + statement + that *",
|
|
" @ must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that *",
|
|
" @ must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that",
|
|
" @ * must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that*",
|
|
" @ must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that*",
|
|
" @ must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that",
|
|
" @ *must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement +",
|
|
" @ that*must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that**",
|
|
" @ must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that**",
|
|
" @ must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that",
|
|
" @ **must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement + that",
|
|
" @ **must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement +",
|
|
" @ that**must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement(that)/",
|
|
" @ must + be + wrapped + properly",
|
|
" this = is + a + long + and + nasty + fortran + statement(that)",
|
|
" @ /must + be + wrapped + properly",
|
|
]
|
|
for line in wrapped_lines:
|
|
assert len(line) <= 72
|
|
for w, e in zip(wrapped_lines, expected_lines):
|
|
assert w == e
|
|
assert len(wrapped_lines) == len(expected_lines)
|
|
|
|
|
|
def test_wrap_fortran_keep_d0():
|
|
printer = FCodePrinter()
|
|
lines = [
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break =1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break = 10.0d0'
|
|
]
|
|
expected = [
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
|
' @ 1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
|
' @ 1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
|
' @ 1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
|
' @ 1.0d0',
|
|
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
|
' @ 10.0d0'
|
|
]
|
|
assert printer._wrap_fortran(lines) == expected
|
|
|
|
|
|
def test_settings():
|
|
raises(TypeError, lambda: fcode(S(4), method="garbage"))
|
|
|
|
|
|
def test_free_form_code_line():
|
|
x, y = symbols('x,y')
|
|
assert fcode(cos(x) + sin(y), source_format='free') == "sin(y) + cos(x)"
|
|
|
|
|
|
def test_free_form_continuation_line():
|
|
x, y = symbols('x,y')
|
|
result = fcode(((cos(x) + sin(y))**(7)).expand(), source_format='free')
|
|
expected = (
|
|
'sin(y)**7 + 7*sin(y)**6*cos(x) + 21*sin(y)**5*cos(x)**2 + 35*sin(y)**4* &\n'
|
|
' cos(x)**3 + 35*sin(y)**3*cos(x)**4 + 21*sin(y)**2*cos(x)**5 + 7* &\n'
|
|
' sin(y)*cos(x)**6 + cos(x)**7'
|
|
)
|
|
assert result == expected
|
|
|
|
|
|
def test_free_form_comment_line():
|
|
printer = FCodePrinter({'source_format': 'free'})
|
|
lines = [ "! This is a long comment on a single line that must be wrapped properly to produce nice output"]
|
|
expected = [
|
|
'! This is a long comment on a single line that must be wrapped properly',
|
|
'! to produce nice output']
|
|
assert printer._wrap_fortran(lines) == expected
|
|
|
|
|
|
def test_loops():
|
|
n, m = symbols('n,m', integer=True)
|
|
A = IndexedBase('A')
|
|
x = IndexedBase('x')
|
|
y = IndexedBase('y')
|
|
i = Idx('i', m)
|
|
j = Idx('j', n)
|
|
|
|
expected = (
|
|
'do i = 1, m\n'
|
|
' y(i) = 0\n'
|
|
'end do\n'
|
|
'do i = 1, m\n'
|
|
' do j = 1, n\n'
|
|
' y(i) = %(rhs)s\n'
|
|
' end do\n'
|
|
'end do'
|
|
)
|
|
|
|
code = fcode(A[i, j]*x[j], assign_to=y[i], source_format='free')
|
|
assert (code == expected % {'rhs': 'y(i) + A(i, j)*x(j)'} or
|
|
code == expected % {'rhs': 'y(i) + x(j)*A(i, j)'} or
|
|
code == expected % {'rhs': 'x(j)*A(i, j) + y(i)'} or
|
|
code == expected % {'rhs': 'A(i, j)*x(j) + y(i)'})
|
|
|
|
|
|
def test_dummy_loops():
|
|
i, m = symbols('i m', integer=True, cls=Dummy)
|
|
x = IndexedBase('x')
|
|
y = IndexedBase('y')
|
|
i = Idx(i, m)
|
|
|
|
expected = (
|
|
'do i_%(icount)i = 1, m_%(mcount)i\n'
|
|
' y(i_%(icount)i) = x(i_%(icount)i)\n'
|
|
'end do'
|
|
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
|
|
code = fcode(x[i], assign_to=y[i], source_format='free')
|
|
assert code == expected
|
|
|
|
|
|
def test_fcode_Indexed_without_looking_for_contraction():
|
|
len_y = 5
|
|
y = IndexedBase('y', shape=(len_y,))
|
|
x = IndexedBase('x', shape=(len_y,))
|
|
Dy = IndexedBase('Dy', shape=(len_y-1,))
|
|
i = Idx('i', len_y-1)
|
|
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
|
|
code0 = fcode(e.rhs, assign_to=e.lhs, contract=False)
|
|
assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))')
|
|
|
|
|
|
def test_element_like_objects():
|
|
len_y = 5
|
|
y = ArraySymbol('y', shape=(len_y,))
|
|
x = ArraySymbol('x', shape=(len_y,))
|
|
Dy = ArraySymbol('Dy', shape=(len_y-1,))
|
|
i = Idx('i', len_y-1)
|
|
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
|
|
code0 = fcode(Assignment(e.lhs, e.rhs))
|
|
assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))')
|
|
|
|
class ElementExpr(Element, Expr):
|
|
pass
|
|
|
|
e = e.subs((a, ElementExpr(a.name, a.indices)) for a in e.atoms(ArrayElement) )
|
|
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
|
|
code0 = fcode(Assignment(e.lhs, e.rhs))
|
|
assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))')
|
|
|
|
|
|
def test_derived_classes():
|
|
class MyFancyFCodePrinter(FCodePrinter):
|
|
_default_settings = FCodePrinter._default_settings.copy()
|
|
|
|
printer = MyFancyFCodePrinter()
|
|
x = symbols('x')
|
|
assert printer.doprint(sin(x), "bork") == " bork = sin(x)"
|
|
|
|
|
|
def test_indent():
|
|
codelines = (
|
|
'subroutine test(a)\n'
|
|
'integer :: a, i, j\n'
|
|
'\n'
|
|
'do\n'
|
|
'do \n'
|
|
'do j = 1, 5\n'
|
|
'if (a>b) then\n'
|
|
'if(b>0) then\n'
|
|
'a = 3\n'
|
|
'donot_indent_me = 2\n'
|
|
'do_not_indent_me_either = 2\n'
|
|
'ifIam_indented_something_went_wrong = 2\n'
|
|
'if_I_am_indented_something_went_wrong = 2\n'
|
|
'end should not be unindented here\n'
|
|
'end if\n'
|
|
'endif\n'
|
|
'end do\n'
|
|
'end do\n'
|
|
'enddo\n'
|
|
'end subroutine\n'
|
|
'\n'
|
|
'subroutine test2(a)\n'
|
|
'integer :: a\n'
|
|
'do\n'
|
|
'a = a + 1\n'
|
|
'end do \n'
|
|
'end subroutine\n'
|
|
)
|
|
expected = (
|
|
'subroutine test(a)\n'
|
|
'integer :: a, i, j\n'
|
|
'\n'
|
|
'do\n'
|
|
' do \n'
|
|
' do j = 1, 5\n'
|
|
' if (a>b) then\n'
|
|
' if(b>0) then\n'
|
|
' a = 3\n'
|
|
' donot_indent_me = 2\n'
|
|
' do_not_indent_me_either = 2\n'
|
|
' ifIam_indented_something_went_wrong = 2\n'
|
|
' if_I_am_indented_something_went_wrong = 2\n'
|
|
' end should not be unindented here\n'
|
|
' end if\n'
|
|
' endif\n'
|
|
' end do\n'
|
|
' end do\n'
|
|
'enddo\n'
|
|
'end subroutine\n'
|
|
'\n'
|
|
'subroutine test2(a)\n'
|
|
'integer :: a\n'
|
|
'do\n'
|
|
' a = a + 1\n'
|
|
'end do \n'
|
|
'end subroutine\n'
|
|
)
|
|
p = FCodePrinter({'source_format': 'free'})
|
|
result = p.indent_code(codelines)
|
|
assert result == expected
|
|
|
|
def test_Matrix_printing():
|
|
x, y, z = symbols('x,y,z')
|
|
# Test returning a Matrix
|
|
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
|
|
A = MatrixSymbol('A', 3, 1)
|
|
assert fcode(mat, A) == (
|
|
" A(1, 1) = x*y\n"
|
|
" if (y > 0) then\n"
|
|
" A(2, 1) = x + 2\n"
|
|
" else\n"
|
|
" A(2, 1) = y\n"
|
|
" end if\n"
|
|
" A(3, 1) = sin(z)")
|
|
# Test using MatrixElements in expressions
|
|
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
|
|
assert fcode(expr, standard=95) == (
|
|
" merge(2*A(3, 1), A(3, 1), x > 0) + sin(A(2, 1)) + A(1, 1)")
|
|
# Test using MatrixElements in a Matrix
|
|
q = MatrixSymbol('q', 5, 1)
|
|
M = MatrixSymbol('M', 3, 3)
|
|
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
|
|
[q[1,0] + q[2,0], q[3, 0], 5],
|
|
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
|
|
assert fcode(m, M) == (
|
|
" M(1, 1) = sin(q(2, 1))\n"
|
|
" M(2, 1) = q(2, 1) + q(3, 1)\n"
|
|
" M(3, 1) = 2*q(5, 1)/q(2, 1)\n"
|
|
" M(1, 2) = 0\n"
|
|
" M(2, 2) = q(4, 1)\n"
|
|
" M(3, 2) = sqrt(q(1, 1)) + 4\n"
|
|
" M(1, 3) = cos(q(3, 1))\n"
|
|
" M(2, 3) = 5\n"
|
|
" M(3, 3) = 0")
|
|
|
|
|
|
def test_fcode_For():
|
|
x, y = symbols('x y')
|
|
|
|
f = For(x, Range(0, 10, 2), [Assignment(y, x * y)])
|
|
sol = fcode(f)
|
|
assert sol == (" do x = 0, 9, 2\n"
|
|
" y = x*y\n"
|
|
" end do")
|
|
|
|
|
|
def test_fcode_Declaration():
|
|
def check(expr, ref, **kwargs):
|
|
assert fcode(expr, standard=95, source_format='free', **kwargs) == ref
|
|
|
|
i = symbols('i', integer=True)
|
|
var1 = Variable.deduced(i)
|
|
dcl1 = Declaration(var1)
|
|
check(dcl1, "integer*4 :: i")
|
|
|
|
|
|
x, y = symbols('x y')
|
|
var2 = Variable(x, float32, value=42, attrs={value_const})
|
|
dcl2b = Declaration(var2)
|
|
check(dcl2b, 'real*4, parameter :: x = 42')
|
|
|
|
var3 = Variable(y, type=bool_)
|
|
dcl3 = Declaration(var3)
|
|
check(dcl3, 'logical :: y')
|
|
|
|
check(float32, "real*4")
|
|
check(float64, "real*8")
|
|
check(real, "real*4", type_aliases={real: float32})
|
|
check(real, "real*8", type_aliases={real: float64})
|
|
|
|
|
|
def test_MatrixElement_printing():
|
|
# test cases for issue #11821
|
|
A = MatrixSymbol("A", 1, 3)
|
|
B = MatrixSymbol("B", 1, 3)
|
|
C = MatrixSymbol("C", 1, 3)
|
|
|
|
assert(fcode(A[0, 0]) == " A(1, 1)")
|
|
assert(fcode(3 * A[0, 0]) == " 3*A(1, 1)")
|
|
|
|
F = C[0, 0].subs(C, A - B)
|
|
assert(fcode(F) == " (A - B)(1, 1)")
|
|
|
|
|
|
def test_aug_assign():
|
|
x = symbols('x')
|
|
assert fcode(aug_assign(x, '+', 1), source_format='free') == 'x = x + 1'
|
|
|
|
|
|
def test_While():
|
|
x = symbols('x')
|
|
assert fcode(While(abs(x) > 1, [aug_assign(x, '-', 1)]), source_format='free') == (
|
|
'do while (abs(x) > 1)\n'
|
|
' x = x - 1\n'
|
|
'end do'
|
|
)
|
|
|
|
|
|
def test_FunctionPrototype_print():
|
|
x = symbols('x')
|
|
n = symbols('n', integer=True)
|
|
vx = Variable(x, type=real)
|
|
vn = Variable(n, type=integer)
|
|
fp1 = FunctionPrototype(real, 'power', [vx, vn])
|
|
# Should be changed to proper test once multi-line generation is working
|
|
# see https://github.com/sympy/sympy/issues/15824
|
|
raises(NotImplementedError, lambda: fcode(fp1))
|
|
|
|
|
|
def test_FunctionDefinition_print():
|
|
x = symbols('x')
|
|
n = symbols('n', integer=True)
|
|
vx = Variable(x, type=real)
|
|
vn = Variable(n, type=integer)
|
|
body = [Assignment(x, x**n), Return(x)]
|
|
fd1 = FunctionDefinition(real, 'power', [vx, vn], body)
|
|
# Should be changed to proper test once multi-line generation is working
|
|
# see https://github.com/sympy/sympy/issues/15824
|
|
raises(NotImplementedError, lambda: fcode(fd1))
|