619 lines
22 KiB
Python
619 lines
22 KiB
Python
from sympy.concrete.summations import Sum
|
|
from sympy.core.add import Add
|
|
from sympy.core.function import (Derivative, Function)
|
|
from sympy.core.mul import Mul
|
|
from sympy.core.numbers import (I, Rational, oo, pi)
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import symbols
|
|
from sympy.functions.combinatorial.factorials import factorial
|
|
from sympy.functions.elementary.exponential import (exp, log)
|
|
from sympy.functions.elementary.hyperbolic import (acosh, asech)
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sin)
|
|
from sympy.functions.special.bessel import airyai
|
|
from sympy.functions.special.error_functions import erf
|
|
from sympy.functions.special.gamma_functions import gamma
|
|
from sympy.integrals.integrals import integrate
|
|
from sympy.series.formal import fps
|
|
from sympy.series.order import O
|
|
from sympy.series.formal import (rational_algorithm, FormalPowerSeries,
|
|
FormalPowerSeriesProduct, FormalPowerSeriesCompose,
|
|
FormalPowerSeriesInverse, simpleDE,
|
|
rational_independent, exp_re, hyper_re)
|
|
from sympy.testing.pytest import raises, XFAIL, slow
|
|
|
|
x, y, z = symbols('x y z')
|
|
n, m, k = symbols('n m k', integer=True)
|
|
f, r = Function('f'), Function('r')
|
|
|
|
|
|
def test_rational_algorithm():
|
|
f = 1 / ((x - 1)**2 * (x - 2))
|
|
assert rational_algorithm(f, x, k) == \
|
|
(-2**(-k - 1) + 1 - (factorial(k + 1) / factorial(k)), 0, 0)
|
|
|
|
f = (1 + x + x**2 + x**3) / ((x - 1) * (x - 2))
|
|
assert rational_algorithm(f, x, k) == \
|
|
(-15*2**(-k - 1) + 4, x + 4, 0)
|
|
|
|
f = z / (y*m - m*x - y*x + x**2)
|
|
assert rational_algorithm(f, x, k) == \
|
|
(((-y**(-k - 1)*z) / (y - m)) + ((m**(-k - 1)*z) / (y - m)), 0, 0)
|
|
|
|
f = x / (1 - x - x**2)
|
|
assert rational_algorithm(f, x, k) is None
|
|
assert rational_algorithm(f, x, k, full=True) == \
|
|
(((Rational(-1, 2) + sqrt(5)/2)**(-k - 1) *
|
|
(-sqrt(5)/10 + S.Half)) +
|
|
((-sqrt(5)/2 - S.Half)**(-k - 1) *
|
|
(sqrt(5)/10 + S.Half)), 0, 0)
|
|
|
|
f = 1 / (x**2 + 2*x + 2)
|
|
assert rational_algorithm(f, x, k) is None
|
|
assert rational_algorithm(f, x, k, full=True) == \
|
|
((I*(-1 + I)**(-k - 1)) / 2 - (I*(-1 - I)**(-k - 1)) / 2, 0, 0)
|
|
|
|
f = log(1 + x)
|
|
assert rational_algorithm(f, x, k) == \
|
|
(-(-1)**(-k) / k, 0, 1)
|
|
|
|
f = atan(x)
|
|
assert rational_algorithm(f, x, k) is None
|
|
assert rational_algorithm(f, x, k, full=True) == \
|
|
(((I*I**(-k)) / 2 - (I*(-I)**(-k)) / 2) / k, 0, 1)
|
|
|
|
f = x*atan(x) - log(1 + x**2) / 2
|
|
assert rational_algorithm(f, x, k) is None
|
|
assert rational_algorithm(f, x, k, full=True) == \
|
|
(((I*I**(-k + 1)) / 2 - (I*(-I)**(-k + 1)) / 2) /
|
|
(k*(k - 1)), 0, 2)
|
|
|
|
f = log((1 + x) / (1 - x)) / 2 - atan(x)
|
|
assert rational_algorithm(f, x, k) is None
|
|
assert rational_algorithm(f, x, k, full=True) == \
|
|
((-(-1)**(-k) / 2 - (I*I**(-k)) / 2 + (I*(-I)**(-k)) / 2 +
|
|
S.Half) / k, 0, 1)
|
|
|
|
assert rational_algorithm(cos(x), x, k) is None
|
|
|
|
|
|
def test_rational_independent():
|
|
ri = rational_independent
|
|
assert ri([], x) == []
|
|
assert ri([cos(x), sin(x)], x) == [cos(x), sin(x)]
|
|
assert ri([x**2, sin(x), x*sin(x), x**3], x) == \
|
|
[x**3 + x**2, x*sin(x) + sin(x)]
|
|
assert ri([S.One, x*log(x), log(x), sin(x)/x, cos(x), sin(x), x], x) == \
|
|
[x + 1, x*log(x) + log(x), sin(x)/x + sin(x), cos(x)]
|
|
|
|
|
|
def test_simpleDE():
|
|
# Tests just the first valid DE
|
|
for DE in simpleDE(exp(x), x, f):
|
|
assert DE == (-f(x) + Derivative(f(x), x), 1)
|
|
break
|
|
for DE in simpleDE(sin(x), x, f):
|
|
assert DE == (f(x) + Derivative(f(x), x, x), 2)
|
|
break
|
|
for DE in simpleDE(log(1 + x), x, f):
|
|
assert DE == ((x + 1)*Derivative(f(x), x, 2) + Derivative(f(x), x), 2)
|
|
break
|
|
for DE in simpleDE(asin(x), x, f):
|
|
assert DE == (x*Derivative(f(x), x) + (x**2 - 1)*Derivative(f(x), x, x),
|
|
2)
|
|
break
|
|
for DE in simpleDE(exp(x)*sin(x), x, f):
|
|
assert DE == (2*f(x) - 2*Derivative(f(x)) + Derivative(f(x), x, x), 2)
|
|
break
|
|
for DE in simpleDE(((1 + x)/(1 - x))**n, x, f):
|
|
assert DE == (2*n*f(x) + (x**2 - 1)*Derivative(f(x), x), 1)
|
|
break
|
|
for DE in simpleDE(airyai(x), x, f):
|
|
assert DE == (-x*f(x) + Derivative(f(x), x, x), 2)
|
|
break
|
|
|
|
|
|
def test_exp_re():
|
|
d = -f(x) + Derivative(f(x), x)
|
|
assert exp_re(d, r, k) == -r(k) + r(k + 1)
|
|
|
|
d = f(x) + Derivative(f(x), x, x)
|
|
assert exp_re(d, r, k) == r(k) + r(k + 2)
|
|
|
|
d = f(x) + Derivative(f(x), x) + Derivative(f(x), x, x)
|
|
assert exp_re(d, r, k) == r(k) + r(k + 1) + r(k + 2)
|
|
|
|
d = Derivative(f(x), x) + Derivative(f(x), x, x)
|
|
assert exp_re(d, r, k) == r(k) + r(k + 1)
|
|
|
|
d = Derivative(f(x), x, 3) + Derivative(f(x), x, 4) + Derivative(f(x))
|
|
assert exp_re(d, r, k) == r(k) + r(k + 2) + r(k + 3)
|
|
|
|
|
|
def test_hyper_re():
|
|
d = f(x) + Derivative(f(x), x, x)
|
|
assert hyper_re(d, r, k) == r(k) + (k+1)*(k+2)*r(k + 2)
|
|
|
|
d = -x*f(x) + Derivative(f(x), x, x)
|
|
assert hyper_re(d, r, k) == (k + 2)*(k + 3)*r(k + 3) - r(k)
|
|
|
|
d = 2*f(x) - 2*Derivative(f(x), x) + Derivative(f(x), x, x)
|
|
assert hyper_re(d, r, k) == \
|
|
(-2*k - 2)*r(k + 1) + (k + 1)*(k + 2)*r(k + 2) + 2*r(k)
|
|
|
|
d = 2*n*f(x) + (x**2 - 1)*Derivative(f(x), x)
|
|
assert hyper_re(d, r, k) == \
|
|
k*r(k) + 2*n*r(k + 1) + (-k - 2)*r(k + 2)
|
|
|
|
d = (x**10 + 4)*Derivative(f(x), x) + x*(x**10 - 1)*Derivative(f(x), x, x)
|
|
assert hyper_re(d, r, k) == \
|
|
(k*(k - 1) + k)*r(k) + (4*k - (k + 9)*(k + 10) + 40)*r(k + 10)
|
|
|
|
d = ((x**2 - 1)*Derivative(f(x), x, 3) + 3*x*Derivative(f(x), x, x) +
|
|
Derivative(f(x), x))
|
|
assert hyper_re(d, r, k) == \
|
|
((k*(k - 2)*(k - 1) + 3*k*(k - 1) + k)*r(k) +
|
|
(-k*(k + 1)*(k + 2))*r(k + 2))
|
|
|
|
|
|
def test_fps():
|
|
assert fps(1) == 1
|
|
assert fps(2, x) == 2
|
|
assert fps(2, x, dir='+') == 2
|
|
assert fps(2, x, dir='-') == 2
|
|
assert fps(1/x + 1/x**2) == 1/x + 1/x**2
|
|
assert fps(log(1 + x), hyper=False, rational=False) == log(1 + x)
|
|
|
|
f = fps(x**2 + x + 1)
|
|
assert isinstance(f, FormalPowerSeries)
|
|
assert f.function == x**2 + x + 1
|
|
assert f[0] == 1
|
|
assert f[2] == x**2
|
|
assert f.truncate(4) == x**2 + x + 1 + O(x**4)
|
|
assert f.polynomial() == x**2 + x + 1
|
|
|
|
f = fps(log(1 + x))
|
|
assert isinstance(f, FormalPowerSeries)
|
|
assert f.function == log(1 + x)
|
|
assert f.subs(x, y) == f
|
|
assert f[:5] == [0, x, -x**2/2, x**3/3, -x**4/4]
|
|
assert f.as_leading_term(x) == x
|
|
assert f.polynomial(6) == x - x**2/2 + x**3/3 - x**4/4 + x**5/5
|
|
|
|
k = f.ak.variables[0]
|
|
assert f.infinite == Sum((-(-1)**(-k)*x**k)/k, (k, 1, oo))
|
|
|
|
ft, s = f.truncate(n=None), f[:5]
|
|
for i, t in enumerate(ft):
|
|
if i == 5:
|
|
break
|
|
assert s[i] == t
|
|
|
|
f = sin(x).fps(x)
|
|
assert isinstance(f, FormalPowerSeries)
|
|
assert f.truncate() == x - x**3/6 + x**5/120 + O(x**6)
|
|
|
|
raises(NotImplementedError, lambda: fps(y*x))
|
|
raises(ValueError, lambda: fps(x, dir=0))
|
|
|
|
|
|
@slow
|
|
def test_fps__rational():
|
|
assert fps(1/x) == (1/x)
|
|
assert fps((x**2 + x + 1) / x**3, dir=-1) == (x**2 + x + 1) / x**3
|
|
|
|
f = 1 / ((x - 1)**2 * (x - 2))
|
|
assert fps(f, x).truncate() == \
|
|
(Rational(-1, 2) - x*Rational(5, 4) - 17*x**2/8 - 49*x**3/16 - 129*x**4/32 -
|
|
321*x**5/64 + O(x**6))
|
|
|
|
f = (1 + x + x**2 + x**3) / ((x - 1) * (x - 2))
|
|
assert fps(f, x).truncate() == \
|
|
(S.Half + x*Rational(5, 4) + 17*x**2/8 + 49*x**3/16 + 113*x**4/32 +
|
|
241*x**5/64 + O(x**6))
|
|
|
|
f = x / (1 - x - x**2)
|
|
assert fps(f, x, full=True).truncate() == \
|
|
x + x**2 + 2*x**3 + 3*x**4 + 5*x**5 + O(x**6)
|
|
|
|
f = 1 / (x**2 + 2*x + 2)
|
|
assert fps(f, x, full=True).truncate() == \
|
|
S.Half - x/2 + x**2/4 - x**4/8 + x**5/8 + O(x**6)
|
|
|
|
f = log(1 + x)
|
|
assert fps(f, x).truncate() == \
|
|
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
|
|
assert fps(f, x, dir=1).truncate() == fps(f, x, dir=-1).truncate()
|
|
assert fps(f, x, 2).truncate() == \
|
|
(log(3) - Rational(2, 3) - (x - 2)**2/18 + (x - 2)**3/81 -
|
|
(x - 2)**4/324 + (x - 2)**5/1215 + x/3 + O((x - 2)**6, (x, 2)))
|
|
assert fps(f, x, 2, dir=-1).truncate() == \
|
|
(log(3) - Rational(2, 3) - (-x + 2)**2/18 - (-x + 2)**3/81 -
|
|
(-x + 2)**4/324 - (-x + 2)**5/1215 + x/3 + O((x - 2)**6, (x, 2)))
|
|
|
|
f = atan(x)
|
|
assert fps(f, x, full=True).truncate() == x - x**3/3 + x**5/5 + O(x**6)
|
|
assert fps(f, x, full=True, dir=1).truncate() == \
|
|
fps(f, x, full=True, dir=-1).truncate()
|
|
assert fps(f, x, 2, full=True).truncate() == \
|
|
(atan(2) - Rational(2, 5) - 2*(x - 2)**2/25 + 11*(x - 2)**3/375 -
|
|
6*(x - 2)**4/625 + 41*(x - 2)**5/15625 + x/5 + O((x - 2)**6, (x, 2)))
|
|
assert fps(f, x, 2, full=True, dir=-1).truncate() == \
|
|
(atan(2) - Rational(2, 5) - 2*(-x + 2)**2/25 - 11*(-x + 2)**3/375 -
|
|
6*(-x + 2)**4/625 - 41*(-x + 2)**5/15625 + x/5 + O((x - 2)**6, (x, 2)))
|
|
|
|
f = x*atan(x) - log(1 + x**2) / 2
|
|
assert fps(f, x, full=True).truncate() == x**2/2 - x**4/12 + O(x**6)
|
|
|
|
f = log((1 + x) / (1 - x)) / 2 - atan(x)
|
|
assert fps(f, x, full=True).truncate(n=10) == 2*x**3/3 + 2*x**7/7 + O(x**10)
|
|
|
|
|
|
@slow
|
|
def test_fps__hyper():
|
|
f = sin(x)
|
|
assert fps(f, x).truncate() == x - x**3/6 + x**5/120 + O(x**6)
|
|
|
|
f = cos(x)
|
|
assert fps(f, x).truncate() == 1 - x**2/2 + x**4/24 + O(x**6)
|
|
|
|
f = exp(x)
|
|
assert fps(f, x).truncate() == \
|
|
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
|
|
|
|
f = atan(x)
|
|
assert fps(f, x).truncate() == x - x**3/3 + x**5/5 + O(x**6)
|
|
|
|
f = exp(acos(x))
|
|
assert fps(f, x).truncate() == \
|
|
(exp(pi/2) - x*exp(pi/2) + x**2*exp(pi/2)/2 - x**3*exp(pi/2)/3 +
|
|
5*x**4*exp(pi/2)/24 - x**5*exp(pi/2)/6 + O(x**6))
|
|
|
|
f = exp(acosh(x))
|
|
assert fps(f, x).truncate() == I + x - I*x**2/2 - I*x**4/8 + O(x**6)
|
|
|
|
f = atan(1/x)
|
|
assert fps(f, x).truncate() == pi/2 - x + x**3/3 - x**5/5 + O(x**6)
|
|
|
|
f = x*atan(x) - log(1 + x**2) / 2
|
|
assert fps(f, x, rational=False).truncate() == x**2/2 - x**4/12 + O(x**6)
|
|
|
|
f = log(1 + x)
|
|
assert fps(f, x, rational=False).truncate() == \
|
|
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
|
|
|
|
f = airyai(x**2)
|
|
assert fps(f, x).truncate() == \
|
|
(3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) -
|
|
3**Rational(2, 3)*x**2/(3*gamma(Rational(1, 3))) + O(x**6))
|
|
|
|
f = exp(x)*sin(x)
|
|
assert fps(f, x).truncate() == x + x**2 + x**3/3 - x**5/30 + O(x**6)
|
|
|
|
f = exp(x)*sin(x)/x
|
|
assert fps(f, x).truncate() == 1 + x + x**2/3 - x**4/30 - x**5/90 + O(x**6)
|
|
|
|
f = sin(x) * cos(x)
|
|
assert fps(f, x).truncate() == x - 2*x**3/3 + 2*x**5/15 + O(x**6)
|
|
|
|
|
|
def test_fps_shift():
|
|
f = x**-5*sin(x)
|
|
assert fps(f, x).truncate() == \
|
|
1/x**4 - 1/(6*x**2) + Rational(1, 120) - x**2/5040 + x**4/362880 + O(x**6)
|
|
|
|
f = x**2*atan(x)
|
|
assert fps(f, x, rational=False).truncate() == \
|
|
x**3 - x**5/3 + O(x**6)
|
|
|
|
f = cos(sqrt(x))*x
|
|
assert fps(f, x).truncate() == \
|
|
x - x**2/2 + x**3/24 - x**4/720 + x**5/40320 + O(x**6)
|
|
|
|
f = x**2*cos(sqrt(x))
|
|
assert fps(f, x).truncate() == \
|
|
x**2 - x**3/2 + x**4/24 - x**5/720 + O(x**6)
|
|
|
|
|
|
def test_fps__Add_expr():
|
|
f = x*atan(x) - log(1 + x**2) / 2
|
|
assert fps(f, x).truncate() == x**2/2 - x**4/12 + O(x**6)
|
|
|
|
f = sin(x) + cos(x) - exp(x) + log(1 + x)
|
|
assert fps(f, x).truncate() == x - 3*x**2/2 - x**4/4 + x**5/5 + O(x**6)
|
|
|
|
f = 1/x + sin(x)
|
|
assert fps(f, x).truncate() == 1/x + x - x**3/6 + x**5/120 + O(x**6)
|
|
|
|
f = sin(x) - cos(x) + 1/(x - 1)
|
|
assert fps(f, x).truncate() == \
|
|
-2 - x**2/2 - 7*x**3/6 - 25*x**4/24 - 119*x**5/120 + O(x**6)
|
|
|
|
|
|
def test_fps__asymptotic():
|
|
f = exp(x)
|
|
assert fps(f, x, oo) == f
|
|
assert fps(f, x, -oo).truncate() == O(1/x**6, (x, oo))
|
|
|
|
f = erf(x)
|
|
assert fps(f, x, oo).truncate() == 1 + O(1/x**6, (x, oo))
|
|
assert fps(f, x, -oo).truncate() == -1 + O(1/x**6, (x, oo))
|
|
|
|
f = atan(x)
|
|
assert fps(f, x, oo, full=True).truncate() == \
|
|
-1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2 + O(1/x**6, (x, oo))
|
|
assert fps(f, x, -oo, full=True).truncate() == \
|
|
-1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2 + O(1/x**6, (x, oo))
|
|
|
|
f = log(1 + x)
|
|
assert fps(f, x, oo) != \
|
|
(-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x - log(1/x) +
|
|
O(1/x**6, (x, oo)))
|
|
assert fps(f, x, -oo) != \
|
|
(-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x + I*pi -
|
|
log(-1/x) + O(1/x**6, (x, oo)))
|
|
|
|
|
|
def test_fps__fractional():
|
|
f = sin(sqrt(x)) / x
|
|
assert fps(f, x).truncate() == \
|
|
(1/sqrt(x) - sqrt(x)/6 + x**Rational(3, 2)/120 -
|
|
x**Rational(5, 2)/5040 + x**Rational(7, 2)/362880 -
|
|
x**Rational(9, 2)/39916800 + x**Rational(11, 2)/6227020800 + O(x**6))
|
|
|
|
f = sin(sqrt(x)) * x
|
|
assert fps(f, x).truncate() == \
|
|
(x**Rational(3, 2) - x**Rational(5, 2)/6 + x**Rational(7, 2)/120 -
|
|
x**Rational(9, 2)/5040 + x**Rational(11, 2)/362880 + O(x**6))
|
|
|
|
f = atan(sqrt(x)) / x**2
|
|
assert fps(f, x).truncate() == \
|
|
(x**Rational(-3, 2) - x**Rational(-1, 2)/3 + x**S.Half/5 -
|
|
x**Rational(3, 2)/7 + x**Rational(5, 2)/9 - x**Rational(7, 2)/11 +
|
|
x**Rational(9, 2)/13 - x**Rational(11, 2)/15 + O(x**6))
|
|
|
|
f = exp(sqrt(x))
|
|
assert fps(f, x).truncate().expand() == \
|
|
(1 + x/2 + x**2/24 + x**3/720 + x**4/40320 + x**5/3628800 + sqrt(x) +
|
|
x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + x**Rational(7, 2)/5040 +
|
|
x**Rational(9, 2)/362880 + x**Rational(11, 2)/39916800 + O(x**6))
|
|
|
|
f = exp(sqrt(x))*x
|
|
assert fps(f, x).truncate().expand() == \
|
|
(x + x**2/2 + x**3/24 + x**4/720 + x**5/40320 + x**Rational(3, 2) +
|
|
x**Rational(5, 2)/6 + x**Rational(7, 2)/120 + x**Rational(9, 2)/5040 +
|
|
x**Rational(11, 2)/362880 + O(x**6))
|
|
|
|
|
|
def test_fps__logarithmic_singularity():
|
|
f = log(1 + 1/x)
|
|
assert fps(f, x) != \
|
|
-log(x) + x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
|
|
assert fps(f, x, rational=False) != \
|
|
-log(x) + x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
|
|
|
|
|
|
@XFAIL
|
|
def test_fps__logarithmic_singularity_fail():
|
|
f = asech(x) # Algorithms for computing limits probably needs improvemnts
|
|
assert fps(f, x) == log(2) - log(x) - x**2/4 - 3*x**4/64 + O(x**6)
|
|
|
|
|
|
def test_fps_symbolic():
|
|
f = x**n*sin(x**2)
|
|
assert fps(f, x).truncate(8) == x**(n + 2) - x**(n + 6)/6 + O(x**(n + 8), x)
|
|
|
|
f = x**n*log(1 + x)
|
|
fp = fps(f, x)
|
|
k = fp.ak.variables[0]
|
|
assert fp.infinite == \
|
|
Sum((-(-1)**(-k)*x**(k + n))/k, (k, 1, oo))
|
|
|
|
f = (x - 2)**n*log(1 + x)
|
|
assert fps(f, x, 2).truncate() == \
|
|
((x - 2)**n*log(3) + (x - 2)**(n + 1)/3 - (x - 2)**(n + 2)/18 + (x - 2)**(n + 3)/81 -
|
|
(x - 2)**(n + 4)/324 + (x - 2)**(n + 5)/1215 + O((x - 2)**(n + 6), (x, 2)))
|
|
|
|
f = x**(n - 2)*cos(x)
|
|
assert fps(f, x).truncate() == \
|
|
(x**(n - 2) - x**n/2 + x**(n + 2)/24 + O(x**(n + 4), x))
|
|
|
|
f = x**(n - 2)*sin(x) + x**n*exp(x)
|
|
assert fps(f, x).truncate() == \
|
|
(x**(n - 1) + x**(n + 1) + x**(n + 2)/2 + x**n +
|
|
x**(n + 4)/24 + x**(n + 5)/60 + O(x**(n + 6), x))
|
|
|
|
f = x**n*atan(x)
|
|
assert fps(f, x, oo).truncate() == \
|
|
(-x**(n - 5)/5 + x**(n - 3)/3 + x**n*(pi/2 - 1/x) +
|
|
O((1/x)**(-n)/x**6, (x, oo)))
|
|
|
|
f = x**(n/2)*cos(x)
|
|
assert fps(f, x).truncate() == \
|
|
x**(n/2) - x**(n/2 + 2)/2 + x**(n/2 + 4)/24 + O(x**(n/2 + 6), x)
|
|
|
|
f = x**(n + m)*sin(x)
|
|
assert fps(f, x).truncate() == \
|
|
x**(m + n + 1) - x**(m + n + 3)/6 + x**(m + n + 5)/120 + O(x**(m + n + 6), x)
|
|
|
|
|
|
def test_fps__slow():
|
|
f = x*exp(x)*sin(2*x) # TODO: rsolve needs improvement
|
|
assert fps(f, x).truncate() == 2*x**2 + 2*x**3 - x**4/3 - x**5 + O(x**6)
|
|
|
|
|
|
def test_fps__operations():
|
|
f1, f2 = fps(sin(x)), fps(cos(x))
|
|
|
|
fsum = f1 + f2
|
|
assert fsum.function == sin(x) + cos(x)
|
|
assert fsum.truncate() == \
|
|
1 + x - x**2/2 - x**3/6 + x**4/24 + x**5/120 + O(x**6)
|
|
|
|
fsum = f1 + 1
|
|
assert fsum.function == sin(x) + 1
|
|
assert fsum.truncate() == 1 + x - x**3/6 + x**5/120 + O(x**6)
|
|
|
|
fsum = 1 + f2
|
|
assert fsum.function == cos(x) + 1
|
|
assert fsum.truncate() == 2 - x**2/2 + x**4/24 + O(x**6)
|
|
|
|
assert (f1 + x) == Add(f1, x)
|
|
|
|
assert -f2.truncate() == -1 + x**2/2 - x**4/24 + O(x**6)
|
|
assert (f1 - f1) is S.Zero
|
|
|
|
fsub = f1 - f2
|
|
assert fsub.function == sin(x) - cos(x)
|
|
assert fsub.truncate() == \
|
|
-1 + x + x**2/2 - x**3/6 - x**4/24 + x**5/120 + O(x**6)
|
|
|
|
fsub = f1 - 1
|
|
assert fsub.function == sin(x) - 1
|
|
assert fsub.truncate() == -1 + x - x**3/6 + x**5/120 + O(x**6)
|
|
|
|
fsub = 1 - f2
|
|
assert fsub.function == -cos(x) + 1
|
|
assert fsub.truncate() == x**2/2 - x**4/24 + O(x**6)
|
|
|
|
raises(ValueError, lambda: f1 + fps(exp(x), dir=-1))
|
|
raises(ValueError, lambda: f1 + fps(exp(x), x0=1))
|
|
|
|
fm = f1 * 3
|
|
|
|
assert fm.function == 3*sin(x)
|
|
assert fm.truncate() == 3*x - x**3/2 + x**5/40 + O(x**6)
|
|
|
|
fm = 3 * f2
|
|
|
|
assert fm.function == 3*cos(x)
|
|
assert fm.truncate() == 3 - 3*x**2/2 + x**4/8 + O(x**6)
|
|
|
|
assert (f1 * f2) == Mul(f1, f2)
|
|
assert (f1 * x) == Mul(f1, x)
|
|
|
|
fd = f1.diff()
|
|
assert fd.function == cos(x)
|
|
assert fd.truncate() == 1 - x**2/2 + x**4/24 + O(x**6)
|
|
|
|
fd = f2.diff()
|
|
assert fd.function == -sin(x)
|
|
assert fd.truncate() == -x + x**3/6 - x**5/120 + O(x**6)
|
|
|
|
fd = f2.diff().diff()
|
|
assert fd.function == -cos(x)
|
|
assert fd.truncate() == -1 + x**2/2 - x**4/24 + O(x**6)
|
|
|
|
f3 = fps(exp(sqrt(x)))
|
|
fd = f3.diff()
|
|
assert fd.truncate().expand() == \
|
|
(1/(2*sqrt(x)) + S.Half + x/12 + x**2/240 + x**3/10080 + x**4/725760 +
|
|
x**5/79833600 + sqrt(x)/4 + x**Rational(3, 2)/48 + x**Rational(5, 2)/1440 +
|
|
x**Rational(7, 2)/80640 + x**Rational(9, 2)/7257600 + x**Rational(11, 2)/958003200 +
|
|
O(x**6))
|
|
|
|
assert f1.integrate((x, 0, 1)) == -cos(1) + 1
|
|
assert integrate(f1, (x, 0, 1)) == -cos(1) + 1
|
|
|
|
fi = integrate(f1, x)
|
|
assert fi.function == -cos(x)
|
|
assert fi.truncate() == -1 + x**2/2 - x**4/24 + O(x**6)
|
|
|
|
fi = f2.integrate(x)
|
|
assert fi.function == sin(x)
|
|
assert fi.truncate() == x - x**3/6 + x**5/120 + O(x**6)
|
|
|
|
def test_fps__product():
|
|
f1, f2, f3 = fps(sin(x)), fps(exp(x)), fps(cos(x))
|
|
|
|
raises(ValueError, lambda: f1.product(exp(x), x))
|
|
raises(ValueError, lambda: f1.product(fps(exp(x), dir=-1), x, 4))
|
|
raises(ValueError, lambda: f1.product(fps(exp(x), x0=1), x, 4))
|
|
raises(ValueError, lambda: f1.product(fps(exp(y)), x, 4))
|
|
|
|
fprod = f1.product(f2, x)
|
|
assert isinstance(fprod, FormalPowerSeriesProduct)
|
|
assert isinstance(fprod.ffps, FormalPowerSeries)
|
|
assert isinstance(fprod.gfps, FormalPowerSeries)
|
|
assert fprod.f == sin(x)
|
|
assert fprod.g == exp(x)
|
|
assert fprod.function == sin(x) * exp(x)
|
|
assert fprod._eval_terms(4) == x + x**2 + x**3/3
|
|
assert fprod.truncate(4) == x + x**2 + x**3/3 + O(x**4)
|
|
assert fprod.polynomial(4) == x + x**2 + x**3/3
|
|
|
|
raises(NotImplementedError, lambda: fprod._eval_term(5))
|
|
raises(NotImplementedError, lambda: fprod.infinite)
|
|
raises(NotImplementedError, lambda: fprod._eval_derivative(x))
|
|
raises(NotImplementedError, lambda: fprod.integrate(x))
|
|
|
|
assert f1.product(f3, x)._eval_terms(4) == x - 2*x**3/3
|
|
assert f1.product(f3, x).truncate(4) == x - 2*x**3/3 + O(x**4)
|
|
|
|
|
|
def test_fps__compose():
|
|
f1, f2, f3 = fps(exp(x)), fps(sin(x)), fps(cos(x))
|
|
|
|
raises(ValueError, lambda: f1.compose(sin(x), x))
|
|
raises(ValueError, lambda: f1.compose(fps(sin(x), dir=-1), x, 4))
|
|
raises(ValueError, lambda: f1.compose(fps(sin(x), x0=1), x, 4))
|
|
raises(ValueError, lambda: f1.compose(fps(sin(y)), x, 4))
|
|
|
|
raises(ValueError, lambda: f1.compose(f3, x))
|
|
raises(ValueError, lambda: f2.compose(f3, x))
|
|
|
|
fcomp = f1.compose(f2, x)
|
|
assert isinstance(fcomp, FormalPowerSeriesCompose)
|
|
assert isinstance(fcomp.ffps, FormalPowerSeries)
|
|
assert isinstance(fcomp.gfps, FormalPowerSeries)
|
|
assert fcomp.f == exp(x)
|
|
assert fcomp.g == sin(x)
|
|
assert fcomp.function == exp(sin(x))
|
|
assert fcomp._eval_terms(6) == 1 + x + x**2/2 - x**4/8 - x**5/15
|
|
assert fcomp.truncate() == 1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6)
|
|
assert fcomp.truncate(5) == 1 + x + x**2/2 - x**4/8 + O(x**5)
|
|
|
|
raises(NotImplementedError, lambda: fcomp._eval_term(5))
|
|
raises(NotImplementedError, lambda: fcomp.infinite)
|
|
raises(NotImplementedError, lambda: fcomp._eval_derivative(x))
|
|
raises(NotImplementedError, lambda: fcomp.integrate(x))
|
|
|
|
assert f1.compose(f2, x).truncate(4) == 1 + x + x**2/2 + O(x**4)
|
|
assert f1.compose(f2, x).truncate(8) == \
|
|
1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8)
|
|
assert f1.compose(f2, x).truncate(6) == \
|
|
1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6)
|
|
|
|
assert f2.compose(f2, x).truncate(4) == x - x**3/3 + O(x**4)
|
|
assert f2.compose(f2, x).truncate(8) == x - x**3/3 + x**5/10 - 8*x**7/315 + O(x**8)
|
|
assert f2.compose(f2, x).truncate(6) == x - x**3/3 + x**5/10 + O(x**6)
|
|
|
|
|
|
def test_fps__inverse():
|
|
f1, f2, f3 = fps(sin(x)), fps(exp(x)), fps(cos(x))
|
|
|
|
raises(ValueError, lambda: f1.inverse(x))
|
|
|
|
finv = f2.inverse(x)
|
|
assert isinstance(finv, FormalPowerSeriesInverse)
|
|
assert isinstance(finv.ffps, FormalPowerSeries)
|
|
raises(ValueError, lambda: finv.gfps)
|
|
|
|
assert finv.f == exp(x)
|
|
assert finv.function == exp(-x)
|
|
assert finv._eval_terms(5) == 1 - x + x**2/2 - x**3/6 + x**4/24
|
|
assert finv.truncate() == 1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6)
|
|
assert finv.truncate(5) == 1 - x + x**2/2 - x**3/6 + x**4/24 + O(x**5)
|
|
|
|
raises(NotImplementedError, lambda: finv._eval_term(5))
|
|
raises(ValueError, lambda: finv.g)
|
|
raises(NotImplementedError, lambda: finv.infinite)
|
|
raises(NotImplementedError, lambda: finv._eval_derivative(x))
|
|
raises(NotImplementedError, lambda: finv.integrate(x))
|
|
|
|
assert f2.inverse(x).truncate(8) == \
|
|
1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + x**6/720 - x**7/5040 + O(x**8)
|
|
|
|
assert f3.inverse(x).truncate() == 1 + x**2/2 + 5*x**4/24 + O(x**6)
|
|
assert f3.inverse(x).truncate(8) == 1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8)
|