67 lines
2.2 KiB
Python
67 lines
2.2 KiB
Python
import numpy
|
|
import pytest
|
|
from hypothesis import given, settings
|
|
from hypothesis.strategies import composite, integers, lists
|
|
from numpy.testing import assert_allclose
|
|
|
|
from thinc.layers import Embed
|
|
from thinc.layers.uniqued import uniqued
|
|
|
|
ROWS = 10
|
|
|
|
# This test uses a newer hypothesis feature than the skanky flatmap-style
|
|
# I used previously. This is much nicer, although it still takes some getting
|
|
# used to. The key feature is this composite decorator. It injects a function,
|
|
# 'draw'.
|
|
|
|
|
|
@composite
|
|
def lists_of_integers(draw, columns=2, lo=0, hi=ROWS - 1):
|
|
# We call draw to get example values, which we can manipulate.
|
|
# Here we get a list of integers, where each member of the list
|
|
# should be between a min and max value.
|
|
int_list = draw(lists(integers(min_value=lo, max_value=hi)))
|
|
# Now we can use this int list to make an array, and it'll be the arrays
|
|
# that our functions receive.
|
|
# We trim the list, so we're of length divisible by columns.
|
|
int_list = int_list[len(int_list) % columns :]
|
|
# And make the array and reshape it.
|
|
array = numpy.array(int_list, dtype="uint64")
|
|
return array.reshape((-1, columns))
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def model(nO=128):
|
|
return Embed(nO, ROWS, column=0).initialize()
|
|
|
|
|
|
def test_uniqued_calls_init():
|
|
calls = []
|
|
embed = Embed(5, 5, column=0)
|
|
embed.init = lambda *args, **kwargs: calls.append(True)
|
|
embed.initialize()
|
|
assert calls == [True]
|
|
uembed = uniqued(embed)
|
|
uembed.initialize()
|
|
assert calls == [True, True]
|
|
|
|
|
|
@given(X=lists_of_integers(lo=0, hi=ROWS - 1))
|
|
@settings(deadline=None)
|
|
def test_uniqued_doesnt_change_result(model, X):
|
|
umodel = uniqued(model, column=model.attrs["column"]).initialize()
|
|
Y, bp_Y = model(X, is_train=True)
|
|
Yu, bp_Yu = umodel(X, is_train=True)
|
|
assert_allclose(Y, Yu)
|
|
dX = bp_Y(Y)
|
|
dXu = bp_Yu(Yu)
|
|
assert_allclose(dX, dXu)
|
|
if X.size:
|
|
pass
|
|
# TODO: This test is a problem, because we exceed the embedding table.
|
|
# Fix it with a better cap.
|
|
# Check that different inputs do give different results
|
|
# Z, bp_Z = model(X + 1, is_train=True)
|
|
# with pytest.raises(AssertionError):
|
|
# assert_allclose(Y, Z)
|