ai-content-maker/.venv/Lib/site-packages/torch/ao/quantization/quantizer/quantizer.py

159 lines
5.4 KiB
Python

from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import Tensor
from torch.ao.quantization import ObserverOrFakeQuantize
from torch.ao.quantization.qconfig import _ObserverOrFakeQuantizeConstructor
from torch.fx import Node
__all__ = [
"Quantizer",
"QuantizationSpecBase",
"QuantizationSpec",
"FixedQParamsQuantizationSpec",
"EdgeOrNode",
"SharedQuantizationSpec",
"DerivedQuantizationSpec",
"QuantizationAnnotation",
]
class QuantizationSpecBase(ABC): # noqa: B024
"""Base class for different types of quantization specs that allows users to
specify how to quantize a Tensor (input/output of a Node) in the model
"""
pass
@dataclass(eq=True, frozen=True)
class QuantizationSpec(QuantizationSpecBase):
"""Quantization spec for common operators that allows user to specify how to
quantize a Tensor, this includes dtype, quant_min, quant_max etc.
"""
dtype: torch.dtype
# observer or fake_quantize constructor such as
# MinMaxObserver, PerChannelHistogramObserver etc.
# or we can attach some custom args to them
# e.g. MinMaxObserver.with_args(eps=eps)
observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor
quant_min: Optional[int] = None
quant_max: Optional[int] = None
qscheme: Optional[torch.qscheme] = None
ch_axis: Optional[int] = None
is_dynamic: bool = False
def __post_init__(self):
# quant_min must be less than quant_max
if (
self.quant_min is not None
and self.quant_max is not None
and self.quant_min > self.quant_max
):
raise ValueError(
f"quant_min {self.quant_min} must be <= quant_max {self.quant_max}."
)
# ch_axis must be less than the number of channels
# but no way to check here. Just check that it is not < 0.
if self.ch_axis is not None and self.ch_axis < 0:
raise ValueError("Ch_axis is < 0.")
@dataclass(eq=True, frozen=True)
class FixedQParamsQuantizationSpec(QuantizationSpecBase):
dtype: torch.dtype
scale: float
zero_point: int
quant_min: Optional[int] = None
quant_max: Optional[int] = None
qscheme: Optional[torch.qscheme] = None
"""
The way we refer to other points of quantization in the graph will be either
an input edge or an output value
input edge is the connection between input node and the node consuming the input, so it's a Tuple[Node, Node]
output value is an fx Node
"""
EdgeOrNode = Union[Tuple[Node, Node], Node]
EdgeOrNode.__module__ = "torch.ao.quantization.quantizer.quantizer"
@dataclass(eq=True, frozen=True)
class SharedQuantizationSpec(QuantizationSpecBase):
"""
Quantization spec for the Tensors whose quantization parameters are shared with other Tensors
"""
# the edge or node to share observer or fake quant instances with
edge_or_node: EdgeOrNode
@dataclass(eq=True, frozen=True)
class DerivedQuantizationSpec(QuantizationSpecBase):
"""Quantization spec for the Tensors whose quantization parameters are derived from other Tensors"""
derived_from: List[EdgeOrNode]
derive_qparams_fn: Callable[[List[ObserverOrFakeQuantize]], Tuple[Tensor, Tensor]]
dtype: torch.dtype
quant_min: Optional[int] = None
quant_max: Optional[int] = None
qscheme: Optional[torch.qscheme] = None
ch_axis: Optional[int] = None
@dataclass
class QuantizationAnnotation:
"""How are input arguemnt or output should be quantized,
expressed as QuantizationSpec, this corresponds to how a Tensor in the
operator Graph is observed (PTQ) or fake quantized (QAT)
"""
# a map from torch.fx.Node to a type of QuantizationSpecBase
input_qspec_map: Dict[Node, Optional[QuantizationSpecBase]] = field(
default_factory=dict
)
# How the output of this node is quantized, expressed as QuantizationSpec
# TODO: change the value to QuantizationSpec in a separate PR
output_qspec: Optional[QuantizationSpecBase] = None
# For a Node: node1 and edge: (node1, node2), since they are observing the same
# Tensor, we may want to implicitly share observers, this flag allows people to
# turn off this behavior for the output of the node
allow_implicit_sharing: bool = True
# whether the node is annotated or not
_annotated: bool = False
class Quantizer(ABC):
def transform_for_annotation(
self, model: torch.fx.GraphModule
) -> torch.fx.GraphModule:
"""Allows for user defined transforms to run before annotating the graph.
This allows quantizer to allow quantizing part of the model that are otherwise not quantizable.
For example quantizer can
a) decompose a compound operator like scaled dot product attention,
into bmm and softmax if quantizer knows how to quantize bmm/softmax but not sdpa
or b) transform scalars to tensor to allow quantizing scalares.
Note: this is an optional method
"""
return model
# annotate nodes in the graph with observer or fake quant constructors
# to convey the desired way of quantization
@abstractmethod
def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule:
pass
# validate the annotated graph is supported by the backend
@abstractmethod
def validate(self, model: torch.fx.GraphModule) -> None:
pass