197 lines
7.1 KiB
Python
197 lines
7.1 KiB
Python
from typing import Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.optim._functional as F
|
|
|
|
from torch import Tensor
|
|
|
|
__all__: List[str] = []
|
|
|
|
# Define a TorchScript compatible Functional Adam Optimizer
|
|
# where we use these optimizer in a functional way.
|
|
# Instead of using the `param.grad` when updating parameters,
|
|
# we explicitly allow the distributed optimizer pass gradients to
|
|
# the `step` function. In this way, we could separate the gradients
|
|
# and parameters and allow multithreaded trainer to update the
|
|
# parameters without data traces on accumulating to the same .grad.
|
|
# NOTE: This should be only used by distributed optimizer internals
|
|
# and not meant to expose to the user.
|
|
@torch.jit.script
|
|
class _FunctionalAdam:
|
|
def __init__(
|
|
self,
|
|
params: List[Tensor],
|
|
lr: float = 1e-3,
|
|
betas: Tuple[float, float] = (0.9, 0.999),
|
|
eps: float = 1e-8,
|
|
weight_decay: float = 0.0,
|
|
amsgrad: bool = False,
|
|
maximize: bool = False,
|
|
foreach: bool = False,
|
|
fused: bool = False,
|
|
_allow_empty_param_list: bool = False,
|
|
):
|
|
if not 0.0 <= lr:
|
|
raise ValueError(f"Invalid learning rate: {lr}")
|
|
if not 0.0 <= eps:
|
|
raise ValueError(f"Invalid epsilon value: {eps}")
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
|
|
|
self.defaults = {
|
|
"lr": lr,
|
|
"eps": eps,
|
|
"beta1": betas[0],
|
|
"beta2": betas[1],
|
|
"weight_decay": weight_decay,
|
|
}
|
|
self.amsgrad = amsgrad
|
|
self.maximize = maximize
|
|
self.foreach = foreach
|
|
self.fused = fused
|
|
self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
|
|
|
|
if len(params) == 0 and not _allow_empty_param_list:
|
|
raise ValueError("optimizer got an empty parameter list")
|
|
|
|
# NOTE: we only have one param_group and don't allow user to add additional
|
|
# param group as it's not a common use case.
|
|
self.param_group = {"params": params}
|
|
|
|
def step_param(self, param: Tensor, grad: Optional[Tensor]):
|
|
"""
|
|
Similar to step, but operates on a single parameter and optionally a
|
|
gradient tensor.
|
|
"""
|
|
params_with_grad = []
|
|
grads = []
|
|
exp_avgs = []
|
|
exp_avg_sqs = []
|
|
max_exp_avg_sqs = []
|
|
state_steps: List[Tensor] = []
|
|
has_complex = torch.is_complex(param)
|
|
if grad is not None:
|
|
params_with_grad.append(param)
|
|
grads.append(grad)
|
|
if param not in self.state:
|
|
self.state[param] = {}
|
|
state = self.state[param]
|
|
state["step"] = torch.tensor(0.0)
|
|
state["exp_avg"] = torch.zeros_like(
|
|
param, memory_format=torch.preserve_format
|
|
)
|
|
state["exp_avg_sq"] = torch.zeros_like(
|
|
param, memory_format=torch.preserve_format
|
|
)
|
|
if self.amsgrad:
|
|
state["max_exp_avg_sq"] = torch.zeros_like(
|
|
param, memory_format=torch.preserve_format
|
|
)
|
|
|
|
state = self.state[param]
|
|
exp_avgs.append(state["exp_avg"])
|
|
exp_avg_sqs.append(state["exp_avg_sq"])
|
|
|
|
if self.amsgrad:
|
|
max_exp_avg_sqs.append(state["max_exp_avg_sq"])
|
|
|
|
state_steps.append(state["step"])
|
|
with torch.no_grad():
|
|
F.adam(
|
|
params_with_grad,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
amsgrad=self.amsgrad,
|
|
has_complex=has_complex,
|
|
maximize=self.maximize,
|
|
beta1=self.defaults["beta1"],
|
|
beta2=self.defaults["beta2"],
|
|
lr=self.defaults["lr"],
|
|
weight_decay=self.defaults["weight_decay"],
|
|
eps=self.defaults["eps"],
|
|
foreach=self.foreach,
|
|
fused=self.fused,
|
|
grad_scale=None,
|
|
found_inf=None,
|
|
)
|
|
|
|
def step(self, gradients: List[Optional[Tensor]]):
|
|
params = self.param_group["params"]
|
|
params_with_grad = []
|
|
grads = []
|
|
exp_avgs = []
|
|
exp_avg_sqs = []
|
|
max_exp_avg_sqs = []
|
|
state_steps: List[Tensor] = []
|
|
has_complex = False
|
|
|
|
if len(params) != len(gradients):
|
|
raise ValueError(
|
|
"the gradients passed in does not equal to the size of the parameters!"
|
|
+ f"Params length: {len(params)}. "
|
|
+ f"Gradients length: {len(gradients)}"
|
|
)
|
|
|
|
for param, gradient in zip(self.param_group["params"], gradients):
|
|
if gradient is not None:
|
|
has_complex |= torch.is_complex(param)
|
|
params_with_grad.append(param)
|
|
grads.append(gradient)
|
|
# Lazy state initialization
|
|
if param not in self.state:
|
|
self.state[param] = {}
|
|
state = self.state[param]
|
|
state["step"] = torch.tensor(0.0)
|
|
# Exponential moving average of gradient values
|
|
state["exp_avg"] = torch.zeros_like(
|
|
param, memory_format=torch.preserve_format
|
|
)
|
|
# Exponential moving average of squared gradient values
|
|
state["exp_avg_sq"] = torch.zeros_like(
|
|
param, memory_format=torch.preserve_format
|
|
)
|
|
if self.amsgrad:
|
|
# Maintains max of all exp. moving avg. of sq. grad. values
|
|
state["max_exp_avg_sq"] = torch.zeros_like(
|
|
param, memory_format=torch.preserve_format
|
|
)
|
|
|
|
state = self.state[param]
|
|
|
|
exp_avgs.append(state["exp_avg"])
|
|
exp_avg_sqs.append(state["exp_avg_sq"])
|
|
|
|
if self.amsgrad:
|
|
max_exp_avg_sqs.append(state["max_exp_avg_sq"])
|
|
|
|
state_steps.append(state["step"])
|
|
|
|
with torch.no_grad():
|
|
F.adam(
|
|
params_with_grad,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
amsgrad=self.amsgrad,
|
|
has_complex=has_complex,
|
|
maximize=self.maximize,
|
|
beta1=self.defaults["beta1"],
|
|
beta2=self.defaults["beta2"],
|
|
lr=self.defaults["lr"],
|
|
weight_decay=self.defaults["weight_decay"],
|
|
eps=self.defaults["eps"],
|
|
foreach=self.foreach,
|
|
fused=self.fused,
|
|
grad_scale=None,
|
|
found_inf=None,
|
|
)
|