269 lines
9.8 KiB
Python
269 lines
9.8 KiB
Python
import torch
|
|
import torch.fx
|
|
import warnings
|
|
import functools
|
|
import builtins
|
|
|
|
from typing import Any, Callable, Dict, Optional, Union
|
|
|
|
def embedding_override(self, input):
|
|
return torch.empty(*input.shape, self.weight.shape[-1], device='meta')
|
|
|
|
|
|
def nn_layernorm_override(self, input):
|
|
return input
|
|
|
|
|
|
def torch_relu_override(x):
|
|
return x
|
|
|
|
|
|
def torch_nn_relu_override(self, x):
|
|
return x
|
|
|
|
|
|
def functional_relu_override(x, inplace=False):
|
|
assert not inplace, 'dont support inplace functional.relu for metatensor analysis'
|
|
return x
|
|
|
|
|
|
def torch_where_override(condition, x, y):
|
|
# torch.where returns the broadcasted tensor of condition, x, and y,
|
|
# so hack it by using addition
|
|
return condition.to(device='meta') + x.to(device='meta') + y.to(device='meta')
|
|
|
|
|
|
def torch_abs_override(input, *, out=None):
|
|
assert out is None, 'Dont support in-place abs for MetaTensor analysis'
|
|
return input
|
|
|
|
manual_meta_overrides : Dict[Callable, Callable] = {
|
|
torch.nn.Embedding: embedding_override,
|
|
torch.nn.LayerNorm: nn_layernorm_override,
|
|
torch.relu: torch_relu_override,
|
|
torch.nn.functional.relu: functional_relu_override,
|
|
torch.nn.ReLU: torch_nn_relu_override,
|
|
torch.where: torch_where_override,
|
|
torch.abs: torch_abs_override,
|
|
}
|
|
|
|
def gen_constructor_wrapper(target):
|
|
@functools.wraps(target)
|
|
def wrapper(*args, **kwargs):
|
|
proxy = None
|
|
|
|
def check_has_proxy(v):
|
|
if isinstance(v, torch.fx.Proxy):
|
|
nonlocal proxy
|
|
proxy = v
|
|
torch.fx.node.map_aggregate(args, check_has_proxy)
|
|
torch.fx.node.map_aggregate(kwargs, check_has_proxy)
|
|
|
|
if proxy is not None:
|
|
return proxy.tracer.create_proxy('call_function', target, args, kwargs)
|
|
else:
|
|
return target(*args, **kwargs)
|
|
return wrapper, target
|
|
|
|
class MetaProxy(torch.fx.Proxy):
|
|
def install_tensor_meta(self, tensor_meta):
|
|
self._tensor_meta = tensor_meta
|
|
|
|
def size(self, dim=None):
|
|
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
|
|
return self._tensor_meta.size(*[dim] if dim else [])
|
|
return self.tracer.create_proxy('call_method', 'size', (self, dim) if dim else (self,), {})
|
|
|
|
def dim(self):
|
|
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
|
|
return self._tensor_meta.dim()
|
|
return self.tracer.create_proxy('call_method', 'dim', (self,), {})
|
|
|
|
@property
|
|
def shape(self):
|
|
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
|
|
return self._tensor_meta.shape
|
|
return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'shape'), {})
|
|
|
|
@property
|
|
def dtype(self):
|
|
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
|
|
return self._tensor_meta.dtype
|
|
return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'dtype'), {})
|
|
|
|
@property
|
|
def device(self):
|
|
# Hack so we can track when devices are used. During meta-tensor propagation,
|
|
# replace these values with a constant 'meta'
|
|
return MetaDeviceAttribute(self, 'device')
|
|
|
|
def __getattr__(self, k):
|
|
if k == '_tensor_meta':
|
|
return self.__getattribute__(k)
|
|
# note: not added to the graph yet, if this is a method call
|
|
# we peephole optimize to the method invocation
|
|
return MetaAttribute(self, k)
|
|
|
|
class MetaAttribute(MetaProxy):
|
|
def __init__(self, root, attr: str):
|
|
|
|
self.root = root
|
|
self.attr = attr
|
|
self.tracer = root.tracer
|
|
self._node = None
|
|
|
|
@property
|
|
def node(self):
|
|
# the node for attributes is added lazily, since most will just be method calls
|
|
# which do not rely on the getitem call
|
|
if self._node is None:
|
|
self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
|
|
return self._node
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
|
|
|
|
class MetaDeviceAttribute(MetaAttribute):
|
|
pass
|
|
|
|
def proxys_to_metas(v):
|
|
if isinstance(v, MetaDeviceAttribute):
|
|
return 'meta'
|
|
if isinstance(v, torch.fx.Proxy):
|
|
assert isinstance(v, MetaProxy), f'Expected MetaProxy but got {type(v)}'
|
|
assert hasattr(v, '_tensor_meta'), 'MetaProxy does not have an associated meta'
|
|
return v._tensor_meta
|
|
return v
|
|
|
|
class MetaTracer(torch.fx.Tracer):
|
|
allow_insert_stateless_mods : bool = True
|
|
|
|
_TORCH_METHODS_TO_PATCH = ['arange', 'zeros', 'ones', 'full_like', 'eye']
|
|
|
|
def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None):
|
|
rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
|
|
|
|
if kind == 'placeholder' and target in self.meta_args:
|
|
rv.install_tensor_meta(self.meta_args[target])
|
|
return rv
|
|
|
|
if target in self.orig_fns:
|
|
# NOTE: tensor constructors in PyTorch define the `device` argument as
|
|
# *kwargs-only*. That is why this works. If you add methods to
|
|
# _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
|
|
# this will break and you will likely see issues where we cannot infer
|
|
# the size of the output.
|
|
if 'device' in kwargs:
|
|
kwargs['device'] = 'meta'
|
|
|
|
try:
|
|
args_metas = torch.fx.node.map_aggregate(args, proxys_to_metas)
|
|
kwargs_metas = torch.fx.node.map_aggregate(kwargs, proxys_to_metas)
|
|
|
|
if kind == 'call_function':
|
|
meta_target = manual_meta_overrides.get(target, target)
|
|
meta_out = meta_target(*args_metas, **kwargs_metas)
|
|
elif kind == 'call_method':
|
|
meta_out = getattr(args_metas[0], target)(*args_metas[1:], **kwargs_metas)
|
|
elif kind == 'call_module':
|
|
assert hasattr(self, 'orig_forward')
|
|
self._disable_module_getattr = True
|
|
try:
|
|
mod = self.root.get_submodule(target)
|
|
mod_type = type(mod)
|
|
if mod_type in manual_meta_overrides:
|
|
meta_out = manual_meta_overrides[mod_type](mod, *args_metas, **kwargs_metas)
|
|
else:
|
|
meta_out = self.orig_forward(*args_metas, **kwargs_metas)
|
|
finally:
|
|
self._disable_module_getattr = False
|
|
elif kind == 'get_attr':
|
|
self._disable_module_getattr = True
|
|
try:
|
|
attr_itr = self.root
|
|
atoms = target.split('.')
|
|
for atom in atoms:
|
|
attr_itr = getattr(attr_itr, atom)
|
|
assert isinstance(attr_itr, torch.Tensor)
|
|
meta_out = attr_itr.to(device='meta')
|
|
finally:
|
|
self._disable_module_getattr = False
|
|
else:
|
|
return rv
|
|
|
|
# TODO
|
|
assert isinstance(rv, torch.fx.Proxy), 'Dont support composite output yet'
|
|
rv.install_tensor_meta(meta_out)
|
|
except Exception as e:
|
|
warnings.warn(f'Could not compute metadata for {kind} target {target}: {e}')
|
|
|
|
return rv
|
|
|
|
def getattr(self, attr, attr_val, parameter_proxy_cache):
|
|
if getattr(self, '_disable_module_getattr', False):
|
|
return attr_val
|
|
else:
|
|
return super().getattr(attr, attr_val, parameter_proxy_cache)
|
|
|
|
def call_module(self, m, forward, args, kwargs):
|
|
self.orig_forward = forward
|
|
return super().call_module(m, forward, args, kwargs)
|
|
|
|
def _insert_module_as_submodule(self, mod: torch.nn.Module) -> str:
|
|
"""
|
|
Helper method which tries to insert a module that was not declared as submodule.
|
|
"""
|
|
idx = 0
|
|
mod_name = mod.__class__.__name__.lower()
|
|
path = f"{mod_name}_{idx}"
|
|
while hasattr(self.root, path):
|
|
path = f"{mod_name}_{idx}"
|
|
idx += 1
|
|
|
|
self.root.add_module(path, mod)
|
|
return path
|
|
|
|
def path_of_module(self, mod: torch.nn.Module) -> str:
|
|
try:
|
|
return super().path_of_module(mod)
|
|
except NameError as e:
|
|
if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0:
|
|
path = self._insert_module_as_submodule(mod)
|
|
self.prev_module = path
|
|
return path
|
|
raise
|
|
|
|
def proxy(self, node):
|
|
return MetaProxy(node, self)
|
|
|
|
def trace(self, root, meta_args : Dict[str, torch.Tensor], concrete_args=None):
|
|
assert isinstance(meta_args, dict)
|
|
self.meta_args = meta_args
|
|
|
|
self.patched_torch_methods = {
|
|
target: gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
|
|
}
|
|
self.orig_fns = set()
|
|
|
|
for name, (wrapper, orig) in self.patched_torch_methods.items():
|
|
setattr(torch, name, wrapper)
|
|
self.orig_fns.add(orig)
|
|
|
|
try:
|
|
graph = super().trace(root, concrete_args)
|
|
graph._tracer_extras = {'meta_args': meta_args}
|
|
return graph
|
|
finally:
|
|
for name, (_, orig) in self.patched_torch_methods.items():
|
|
setattr(torch, name, orig)
|
|
|
|
|
|
def symbolic_trace(root : Union[torch.nn.Module, Callable[..., Any]],
|
|
meta_args : Optional[Dict[str, torch.Tensor]] = None,
|
|
concrete_args: Optional[Dict[str, Any]] = None) -> torch.fx.GraphModule:
|
|
tracer = MetaTracer()
|
|
graph = tracer.trace(root, meta_args, concrete_args)
|
|
name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
|
|
gm = torch.fx.GraphModule(tracer.root, graph, name)
|
|
return gm
|