422 lines
16 KiB
Python
422 lines
16 KiB
Python
|
|
import hashlib
|
|
import torch
|
|
import torch.fx
|
|
from typing import Any, Dict, Optional, TYPE_CHECKING
|
|
from torch.fx.node import _get_qualified_name, _format_arg
|
|
from torch.fx.graph import _parse_stack_trace
|
|
from torch.fx.passes.shape_prop import TensorMetadata
|
|
from torch.fx._compatibility import compatibility
|
|
from itertools import chain
|
|
|
|
__all__ = ['FxGraphDrawer']
|
|
try:
|
|
import pydot
|
|
HAS_PYDOT = True
|
|
except ImportError:
|
|
HAS_PYDOT = False
|
|
|
|
_COLOR_MAP = {
|
|
"placeholder": '"AliceBlue"',
|
|
"call_module": "LemonChiffon1",
|
|
"get_param": "Yellow2",
|
|
"get_attr": "LightGrey",
|
|
"output": "PowderBlue",
|
|
}
|
|
|
|
_HASH_COLOR_MAP = [
|
|
"CadetBlue1",
|
|
"Coral",
|
|
"DarkOliveGreen1",
|
|
"DarkSeaGreen1",
|
|
"GhostWhite",
|
|
"Khaki1",
|
|
"LavenderBlush1",
|
|
"LightSkyBlue",
|
|
"MistyRose1",
|
|
"MistyRose2",
|
|
"PaleTurquoise2",
|
|
"PeachPuff1",
|
|
"Salmon",
|
|
"Thistle1",
|
|
"Thistle3",
|
|
"Wheat1",
|
|
]
|
|
|
|
_WEIGHT_TEMPLATE = {
|
|
"fillcolor": "Salmon",
|
|
"style": '"filled,rounded"',
|
|
"fontcolor": "#000000",
|
|
}
|
|
|
|
if HAS_PYDOT:
|
|
@compatibility(is_backward_compatible=False)
|
|
class FxGraphDrawer:
|
|
"""
|
|
Visualize a torch.fx.Graph with graphviz
|
|
Basic usage:
|
|
g = FxGraphDrawer(symbolic_traced, "resnet18")
|
|
g.get_dot_graph().write_svg("a.svg")
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
graph_module: torch.fx.GraphModule,
|
|
name: str,
|
|
ignore_getattr: bool = False,
|
|
ignore_parameters_and_buffers: bool = False,
|
|
skip_node_names_in_args: bool = True,
|
|
parse_stack_trace: bool = False,
|
|
dot_graph_shape: Optional[str] = None,
|
|
):
|
|
self._name = name
|
|
self.dot_graph_shape = (
|
|
dot_graph_shape if dot_graph_shape is not None else "record"
|
|
)
|
|
_WEIGHT_TEMPLATE["shape"] = self.dot_graph_shape
|
|
|
|
self._dot_graphs = {
|
|
name: self._to_dot(
|
|
graph_module, name, ignore_getattr, ignore_parameters_and_buffers, skip_node_names_in_args, parse_stack_trace
|
|
)
|
|
}
|
|
|
|
for node in graph_module.graph.nodes:
|
|
if node.op != "call_module":
|
|
continue
|
|
|
|
leaf_node = self._get_leaf_node(graph_module, node)
|
|
|
|
if not isinstance(leaf_node, torch.fx.GraphModule):
|
|
continue
|
|
|
|
|
|
self._dot_graphs[f"{name}_{node.target}"] = self._to_dot(
|
|
leaf_node,
|
|
f"{name}_{node.target}",
|
|
ignore_getattr,
|
|
ignore_parameters_and_buffers,
|
|
skip_node_names_in_args,
|
|
parse_stack_trace,
|
|
)
|
|
|
|
def get_dot_graph(self, submod_name=None) -> pydot.Dot:
|
|
"""
|
|
Visualize a torch.fx.Graph with graphviz
|
|
Example:
|
|
>>> # xdoctest: +REQUIRES(module:pydot)
|
|
>>> # define module
|
|
>>> class MyModule(torch.nn.Module):
|
|
>>> def __init__(self):
|
|
>>> super().__init__()
|
|
>>> self.linear = torch.nn.Linear(4, 5)
|
|
>>> def forward(self, x):
|
|
>>> return self.linear(x).clamp(min=0.0, max=1.0)
|
|
>>> module = MyModule()
|
|
>>> # trace the module
|
|
>>> symbolic_traced = torch.fx.symbolic_trace(module)
|
|
>>> # setup output file
|
|
>>> import ubelt as ub
|
|
>>> dpath = ub.Path.appdir('torch/tests/FxGraphDrawer').ensuredir()
|
|
>>> fpath = dpath / 'linear.svg'
|
|
>>> # draw the graph
|
|
>>> g = FxGraphDrawer(symbolic_traced, "linear")
|
|
>>> g.get_dot_graph().write_svg(fpath)
|
|
"""
|
|
if submod_name is None:
|
|
return self.get_main_dot_graph()
|
|
else:
|
|
return self.get_submod_dot_graph(submod_name)
|
|
|
|
def get_main_dot_graph(self) -> pydot.Dot:
|
|
return self._dot_graphs[self._name]
|
|
|
|
def get_submod_dot_graph(self, submod_name) -> pydot.Dot:
|
|
return self._dot_graphs[f"{self._name}_{submod_name}"]
|
|
|
|
def get_all_dot_graphs(self) -> Dict[str, pydot.Dot]:
|
|
return self._dot_graphs
|
|
|
|
def _get_node_style(self, node: torch.fx.Node) -> Dict[str, str]:
|
|
|
|
template = {
|
|
"shape": self.dot_graph_shape,
|
|
"fillcolor": "#CAFFE3",
|
|
"style": '"filled,rounded"',
|
|
"fontcolor": "#000000",
|
|
}
|
|
if node.op in _COLOR_MAP:
|
|
template["fillcolor"] = _COLOR_MAP[node.op]
|
|
else:
|
|
# Use a random color for each node; based on its name so it's stable.
|
|
target_name = node._pretty_print_target(node.target)
|
|
target_hash = int(hashlib.md5(target_name.encode()).hexdigest()[:8], 16)
|
|
template["fillcolor"] = _HASH_COLOR_MAP[target_hash % len(_HASH_COLOR_MAP)]
|
|
return template
|
|
|
|
def _get_leaf_node(
|
|
self, module: torch.nn.Module, node: torch.fx.Node
|
|
) -> torch.nn.Module:
|
|
py_obj = module
|
|
assert isinstance(node.target, str)
|
|
atoms = node.target.split(".")
|
|
for atom in atoms:
|
|
if not hasattr(py_obj, atom):
|
|
raise RuntimeError(
|
|
str(py_obj) + " does not have attribute " + atom + "!"
|
|
)
|
|
py_obj = getattr(py_obj, atom)
|
|
return py_obj
|
|
|
|
def _typename(self, target: Any) -> str:
|
|
if isinstance(target, torch.nn.Module):
|
|
ret = torch.typename(target)
|
|
elif isinstance(target, str):
|
|
ret = target
|
|
else:
|
|
ret = _get_qualified_name(target)
|
|
|
|
# Escape "{" and "}" to prevent dot files like:
|
|
# https://gist.github.com/SungMinCho/1a017aab662c75d805c5954d62c5aabc
|
|
# which triggers `Error: bad label format (...)` from dot
|
|
return ret.replace("{", r"\{").replace("}", r"\}")
|
|
|
|
# shorten path to avoid drawing long boxes
|
|
# for full path = '/home/weif/pytorch/test.py'
|
|
# return short path = 'pytorch/test.py'
|
|
def _shorten_file_name(
|
|
self,
|
|
full_file_name: str,
|
|
truncate_to_last_n: int = 2,
|
|
):
|
|
splits = full_file_name.split('/')
|
|
if len(splits) >= truncate_to_last_n:
|
|
return '/'.join(splits[-truncate_to_last_n:])
|
|
return full_file_name
|
|
|
|
|
|
def _get_node_label(
|
|
self,
|
|
module: torch.fx.GraphModule,
|
|
node: torch.fx.Node,
|
|
skip_node_names_in_args: bool,
|
|
parse_stack_trace: bool,
|
|
) -> str:
|
|
def _get_str_for_args_kwargs(arg):
|
|
if isinstance(arg, tuple):
|
|
prefix, suffix = r"|args=(\l", r",\n)\l"
|
|
arg_strs_list = [_format_arg(a, max_list_len=8) for a in arg]
|
|
elif isinstance(arg, dict):
|
|
prefix, suffix = r"|kwargs={\l", r",\n}\l"
|
|
arg_strs_list = [
|
|
f"{k}: {_format_arg(v, max_list_len=8)}"
|
|
for k, v in arg.items()
|
|
]
|
|
else: # Fall back to nothing in unexpected case.
|
|
return ""
|
|
|
|
# Strip out node names if requested.
|
|
if skip_node_names_in_args:
|
|
arg_strs_list = [a for a in arg_strs_list if "%" not in a]
|
|
if len(arg_strs_list) == 0:
|
|
return ""
|
|
arg_strs = prefix + r",\n".join(arg_strs_list) + suffix
|
|
if len(arg_strs_list) == 1:
|
|
arg_strs = arg_strs.replace(r"\l", "").replace(r"\n", "")
|
|
return arg_strs.replace("{", r"\{").replace("}", r"\}")
|
|
|
|
|
|
label = "{" + f"name=%{node.name}|op_code={node.op}\n"
|
|
|
|
if node.op == "call_module":
|
|
leaf_module = self._get_leaf_node(module, node)
|
|
label += r"\n" + self._typename(leaf_module) + r"\n|"
|
|
extra = ""
|
|
if hasattr(leaf_module, "__constants__"):
|
|
extra = r"\n".join(
|
|
[f"{c}: {getattr(leaf_module, c)}" for c in leaf_module.__constants__] # type: ignore[union-attr]
|
|
)
|
|
label += extra + r"\n"
|
|
else:
|
|
label += f"|target={self._typename(node.target)}" + r"\n"
|
|
if len(node.args) > 0:
|
|
label += _get_str_for_args_kwargs(node.args)
|
|
if len(node.kwargs) > 0:
|
|
label += _get_str_for_args_kwargs(node.kwargs)
|
|
label += f"|num_users={len(node.users)}" + r"\n"
|
|
|
|
tensor_meta = node.meta.get('tensor_meta')
|
|
label += self._tensor_meta_to_label(tensor_meta)
|
|
|
|
# for original fx graph
|
|
# print buf=buf0, n_origin=6
|
|
buf_meta = node.meta.get('buf_meta', None)
|
|
if buf_meta is not None:
|
|
label += f"|buf={buf_meta.name}" + r"\n"
|
|
label += f"|n_origin={buf_meta.n_origin}" + r"\n"
|
|
|
|
# for original fx graph
|
|
# print file:lineno code
|
|
if parse_stack_trace and node.stack_trace is not None:
|
|
parsed_stack_trace = _parse_stack_trace(node.stack_trace)
|
|
fname = self._shorten_file_name(parsed_stack_trace.file)
|
|
label += f"|file={fname}:{parsed_stack_trace.lineno} {parsed_stack_trace.code}" + r"\n"
|
|
|
|
|
|
return label + "}"
|
|
|
|
def _tensor_meta_to_label(self, tm) -> str:
|
|
if tm is None:
|
|
return ""
|
|
elif isinstance(tm, TensorMetadata):
|
|
return self._stringify_tensor_meta(tm)
|
|
elif isinstance(tm, list):
|
|
result = ""
|
|
for item in tm:
|
|
result += self._tensor_meta_to_label(item)
|
|
return result
|
|
elif isinstance(tm, dict):
|
|
result = ""
|
|
for v in tm.values():
|
|
result += self._tensor_meta_to_label(v)
|
|
return result
|
|
elif isinstance(tm, tuple):
|
|
result = ""
|
|
for item in tm:
|
|
result += self._tensor_meta_to_label(item)
|
|
return result
|
|
else:
|
|
raise RuntimeError(f"Unsupported tensor meta type {type(tm)}")
|
|
|
|
def _stringify_tensor_meta(self, tm: TensorMetadata) -> str:
|
|
result = ""
|
|
if not hasattr(tm, "dtype"):
|
|
print("tm", tm)
|
|
result += "|" + "dtype" + "=" + str(tm.dtype) + r"\n"
|
|
result += "|" + "shape" + "=" + str(tuple(tm.shape)) + r"\n"
|
|
result += "|" + "requires_grad" + "=" + str(tm.requires_grad) + r"\n"
|
|
result += "|" + "stride" + "=" + str(tm.stride) + r"\n"
|
|
if tm.is_quantized:
|
|
assert tm.qparams is not None
|
|
assert "qscheme" in tm.qparams
|
|
qscheme = tm.qparams["qscheme"]
|
|
if qscheme in {
|
|
torch.per_tensor_affine,
|
|
torch.per_tensor_symmetric,
|
|
}:
|
|
result += "|" + "q_scale" + "=" + str(tm.qparams["scale"]) + r"\n"
|
|
result += "|" + "q_zero_point" + "=" + str(tm.qparams["zero_point"]) + r"\n"
|
|
elif qscheme in {
|
|
torch.per_channel_affine,
|
|
torch.per_channel_symmetric,
|
|
torch.per_channel_affine_float_qparams,
|
|
}:
|
|
result += "|" + "q_per_channel_scale" + "=" + str(tm.qparams["scale"]) + r"\n"
|
|
result += "|" + "q_per_channel_zero_point" + "=" + str(tm.qparams["zero_point"]) + r"\n"
|
|
result += "|" + "q_per_channel_axis" + "=" + str(tm.qparams["axis"]) + r"\n"
|
|
else:
|
|
raise RuntimeError(f"Unsupported qscheme: {qscheme}")
|
|
result += "|" + "qscheme" + "=" + str(tm.qparams["qscheme"]) + r"\n"
|
|
return result
|
|
|
|
def _get_tensor_label(self, t: torch.Tensor) -> str:
|
|
return str(t.dtype) + str(list(t.shape)) + r"\n"
|
|
|
|
# when parse_stack_trace=True
|
|
# print file:lineno code
|
|
def _to_dot(
|
|
self,
|
|
graph_module: torch.fx.GraphModule,
|
|
name: str,
|
|
ignore_getattr: bool,
|
|
ignore_parameters_and_buffers: bool,
|
|
skip_node_names_in_args: bool,
|
|
parse_stack_trace: bool,
|
|
) -> pydot.Dot:
|
|
"""
|
|
Actual interface to visualize a fx.Graph. Note that it takes in the GraphModule instead of the Graph.
|
|
If ignore_parameters_and_buffers is True, the parameters and buffers
|
|
created with the module will not be added as nodes and edges.
|
|
"""
|
|
|
|
# "TB" means top-to-bottom rank direction in layout
|
|
dot_graph = pydot.Dot(name, rankdir="TB")
|
|
|
|
|
|
buf_name_to_subgraph = {}
|
|
|
|
for node in graph_module.graph.nodes:
|
|
if ignore_getattr and node.op == "get_attr":
|
|
continue
|
|
|
|
style = self._get_node_style(node)
|
|
dot_node = pydot.Node(
|
|
node.name, label=self._get_node_label(graph_module, node, skip_node_names_in_args, parse_stack_trace), **style
|
|
)
|
|
|
|
current_graph = dot_graph
|
|
|
|
buf_meta = node.meta.get('buf_meta', None)
|
|
if buf_meta is not None and buf_meta.n_origin > 1:
|
|
buf_name = buf_meta.name
|
|
if buf_name not in buf_name_to_subgraph:
|
|
buf_name_to_subgraph[buf_name] = pydot.Cluster(buf_name, label=buf_name)
|
|
current_graph = buf_name_to_subgraph.get(buf_name)
|
|
|
|
current_graph.add_node(dot_node)
|
|
|
|
def get_module_params_or_buffers():
|
|
for pname, ptensor in chain(
|
|
leaf_module.named_parameters(), leaf_module.named_buffers()
|
|
):
|
|
pname1 = node.name + "." + pname
|
|
label1 = (
|
|
pname1 + "|op_code=get_" + "parameter"
|
|
if isinstance(ptensor, torch.nn.Parameter)
|
|
else "buffer" + r"\l"
|
|
)
|
|
dot_w_node = pydot.Node(
|
|
pname1,
|
|
label="{" + label1 + self._get_tensor_label(ptensor) + "}",
|
|
**_WEIGHT_TEMPLATE,
|
|
)
|
|
dot_graph.add_node(dot_w_node)
|
|
dot_graph.add_edge(pydot.Edge(pname1, node.name))
|
|
|
|
if node.op == "call_module":
|
|
leaf_module = self._get_leaf_node(graph_module, node)
|
|
|
|
if not ignore_parameters_and_buffers and not isinstance(leaf_module, torch.fx.GraphModule):
|
|
get_module_params_or_buffers()
|
|
|
|
for subgraph in buf_name_to_subgraph.values():
|
|
subgraph.set('color', 'royalblue')
|
|
subgraph.set('penwidth', '2')
|
|
dot_graph.add_subgraph(subgraph)
|
|
|
|
for node in graph_module.graph.nodes:
|
|
if ignore_getattr and node.op == "get_attr":
|
|
continue
|
|
|
|
for user in node.users:
|
|
dot_graph.add_edge(pydot.Edge(node.name, user.name))
|
|
|
|
return dot_graph
|
|
|
|
else:
|
|
if not TYPE_CHECKING:
|
|
@compatibility(is_backward_compatible=False)
|
|
class FxGraphDrawer:
|
|
def __init__(
|
|
self,
|
|
graph_module: torch.fx.GraphModule,
|
|
name: str,
|
|
ignore_getattr: bool = False,
|
|
ignore_parameters_and_buffers: bool = False,
|
|
skip_node_names_in_args: bool = True,
|
|
parse_stack_trace: bool = False,
|
|
dot_graph_shape: Optional[str] = None,
|
|
):
|
|
raise RuntimeError('FXGraphDrawer requires the pydot package to be installed. Please install '
|
|
'pydot through your favorite Python package manager.')
|