ai-content-maker/.venv/Lib/site-packages/torch/utils/data/datapipes/datapipe.py

405 lines
16 KiB
Python

import functools
import pickle
from typing import Dict, Callable, Optional, TypeVar, Generic, Iterator
from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
from torch.utils.data.datapipes.utils.common import (
_deprecation_warning,
_iter_deprecated_functional_names,
_map_deprecated_functional_names,
)
from torch.utils.data.dataset import Dataset, IterableDataset
from torch.utils._import_utils import import_dill
dill = import_dill()
HAS_DILL = dill is not None
__all__ = [
"DataChunk",
"DFIterDataPipe",
"IterDataPipe",
"MapDataPipe",
]
T = TypeVar('T')
T_co = TypeVar('T_co', covariant=True)
UNTRACABLE_DATAFRAME_PIPES = ['batch', # As it returns DataChunks
'groupby', # As it returns DataChunks
'_dataframes_as_tuples', # As it unpacks DF
'trace_as_dataframe', # As it used to mark DF for tracing
]
class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
r"""
Iterable-style DataPipe.
All DataPipes that represent an iterable of data samples should subclass this.
This style of DataPipes is particularly useful when data come from a stream, or
when the number of samples is too large to fit them all in memory. ``IterDataPipe`` is lazily initialized and its
elements are computed only when ``next()`` is called on the iterator of an ``IterDataPipe``.
All subclasses should overwrite :meth:`__iter__`, which would return an
iterator of samples in this DataPipe. Calling ``__iter__`` of an ``IterDataPipe`` automatically invokes its
method ``reset()``, which by default performs no operation. When writing a custom ``IterDataPipe``, users should
override ``reset()`` if necessary. The common usages include resetting buffers, pointers,
and various state variables within the custom ``IterDataPipe``.
Note:
Only `one` iterator can be valid for each ``IterDataPipe`` at a time,
and the creation a second iterator will invalidate the first one. This constraint is necessary because
some ``IterDataPipe`` have internal buffers, whose states can become invalid if there are multiple iterators.
The code example below presents details on how this constraint looks in practice.
If you have any feedback related to this constraint, please see `GitHub IterDataPipe Single Iterator Issue`_.
These DataPipes can be invoked in two ways, using the class constructor or applying their
functional form onto an existing ``IterDataPipe`` (recommended, available to most but not all DataPipes).
You can chain multiple `IterDataPipe` together to form a pipeline that will perform multiple
operations in succession.
.. _GitHub IterDataPipe Single Iterator Issue:
https://github.com/pytorch/data/issues/45
Note:
When a subclass is used with :class:`~torch.utils.data.DataLoader`, each
item in the DataPipe will be yielded from the :class:`~torch.utils.data.DataLoader`
iterator. When :attr:`num_workers > 0`, each worker process will have a
different copy of the DataPipe object, so it is often desired to configure
each copy independently to avoid having duplicate data returned from the
workers. :func:`~torch.utils.data.get_worker_info`, when called in a worker
process, returns information about the worker. It can be used in either the
dataset's :meth:`__iter__` method or the :class:`~torch.utils.data.DataLoader` 's
:attr:`worker_init_fn` option to modify each copy's behavior.
Examples:
General Usage:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
>>> dp = IterableWrapper(range(10))
>>> map_dp_1 = Mapper(dp, lambda x: x + 1) # Using class constructor
>>> map_dp_2 = dp.map(lambda x: x + 1) # Using functional form (recommended)
>>> list(map_dp_1)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(map_dp_2)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> filter_dp = map_dp_1.filter(lambda x: x % 2 == 0)
>>> list(filter_dp)
[2, 4, 6, 8, 10]
Single Iterator Constraint Example:
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
>>> source_dp = IterableWrapper(range(10))
>>> it1 = iter(source_dp)
>>> list(it1)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> it1 = iter(source_dp)
>>> it2 = iter(source_dp) # The creation of a new iterator invalidates `it1`
>>> next(it2)
0
>>> next(it1) # Further usage of `it1` will raise a `RunTimeError`
"""
functions: Dict[str, Callable] = {}
reduce_ex_hook: Optional[Callable] = None
getstate_hook: Optional[Callable] = None
str_hook: Optional[Callable] = None
repr_hook: Optional[Callable] = None
_valid_iterator_id: Optional[int] = None
_number_of_samples_yielded: int = 0
_snapshot_state: _SnapshotState = _SnapshotState.NotStarted
_fast_forward_iterator: Optional[Iterator] = None
def __iter__(self) -> Iterator[T_co]:
return self
def __getattr__(self, attribute_name):
if attribute_name in IterDataPipe.functions:
if attribute_name in _iter_deprecated_functional_names:
kwargs = _iter_deprecated_functional_names[attribute_name]
_deprecation_warning(**kwargs)
f = IterDataPipe.functions[attribute_name]
function = functools.partial(f, self)
functools.update_wrapper(wrapper=function, wrapped=f, assigned=("__doc__",))
return function
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute_name}")
@classmethod
def register_function(cls, function_name, function):
cls.functions[function_name] = function
@classmethod
def register_datapipe_as_function(cls, function_name, cls_to_register, enable_df_api_tracing=False):
if function_name in cls.functions:
raise Exception(f"Unable to add DataPipe function name {function_name} as it is already taken")
def class_function(cls, enable_df_api_tracing, source_dp, *args, **kwargs):
result_pipe = cls(source_dp, *args, **kwargs)
if isinstance(result_pipe, IterDataPipe):
if enable_df_api_tracing or isinstance(source_dp, DFIterDataPipe):
if function_name not in UNTRACABLE_DATAFRAME_PIPES:
result_pipe = result_pipe.trace_as_dataframe()
return result_pipe
function = functools.partial(
class_function, cls_to_register, enable_df_api_tracing
)
functools.update_wrapper(
wrapper=function, wrapped=cls_to_register, assigned=("__doc__",)
)
cls.functions[function_name] = function
def __getstate__(self):
"""
Serialize `lambda` functions when `dill` is available.
If this doesn't cover your custom DataPipe's use case, consider writing custom methods for
`__getstate__` and `__setstate__`, or use `pickle.dumps` for serialization.
"""
state = self.__dict__
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __reduce_ex__(self, *args, **kwargs):
if IterDataPipe.reduce_ex_hook is not None:
try:
return IterDataPipe.reduce_ex_hook(self)
except NotImplementedError:
pass
return super().__reduce_ex__(*args, **kwargs)
@classmethod
def set_getstate_hook(cls, hook_fn):
if IterDataPipe.getstate_hook is not None and hook_fn is not None:
raise Exception("Attempt to override existing getstate_hook")
IterDataPipe.getstate_hook = hook_fn
@classmethod
def set_reduce_ex_hook(cls, hook_fn):
if IterDataPipe.reduce_ex_hook is not None and hook_fn is not None:
raise Exception("Attempt to override existing reduce_ex_hook")
IterDataPipe.reduce_ex_hook = hook_fn
def __repr__(self):
if self.repr_hook is not None:
return self.repr_hook(self)
# Instead of showing <torch. ... .MapperIterDataPipe object at 0x.....>, return the class name
return str(self.__class__.__qualname__)
def __str__(self):
if self.str_hook is not None:
return self.str_hook(self)
# Instead of showing <torch. ... .MapperIterDataPipe object at 0x.....>, return the class name
return str(self.__class__.__qualname__)
def __dir__(self):
# for auto-completion in a REPL (e.g. Jupyter notebook)
return list(super().__dir__()) + list(self.functions.keys())
def reset(self) -> None:
r"""
Reset the `IterDataPipe` to the initial state.
By default, no-op. For subclasses of `IterDataPipe`, depending on their functionalities,
they may want to override this method with implementations that
may clear the buffers and reset pointers of the DataPipe.
The `reset` method is always called when `__iter__` is called as part of `hook_iterator`.
"""
pass
class DFIterDataPipe(IterDataPipe):
def _is_dfpipe(self):
return True
class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
r"""
Map-style DataPipe.
All datasets that represent a map from keys to data samples should subclass this.
Subclasses should overwrite :meth:`__getitem__`, supporting fetching a
data sample for a given, unique key. Subclasses can also optionally overwrite
:meth:`__len__`, which is expected to return the size of the dataset by many
:class:`~torch.utils.data.Sampler` implementations and the default options
of :class:`~torch.utils.data.DataLoader`.
These DataPipes can be invoked in two ways, using the class constructor or applying their
functional form onto an existing `MapDataPipe` (recommend, available to most but not all DataPipes).
Note:
:class:`~torch.utils.data.DataLoader` by default constructs an index
sampler that yields integral indices. To make it work with a map-style
DataPipe with non-integral indices/keys, a custom sampler must be provided.
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.map import SequenceWrapper, Mapper
>>> dp = SequenceWrapper(range(10))
>>> map_dp_1 = dp.map(lambda x: x + 1) # Using functional form (recommended)
>>> list(map_dp_1)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> map_dp_2 = Mapper(dp, lambda x: x + 1) # Using class constructor
>>> list(map_dp_2)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> batch_dp = map_dp_1.batch(batch_size=2)
>>> list(batch_dp)
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
"""
functions: Dict[str, Callable] = {}
reduce_ex_hook: Optional[Callable] = None
getstate_hook: Optional[Callable] = None
str_hook: Optional[Callable] = None
repr_hook: Optional[Callable] = None
def __getattr__(self, attribute_name):
if attribute_name in MapDataPipe.functions:
if attribute_name in _map_deprecated_functional_names:
kwargs = _map_deprecated_functional_names[attribute_name]
_deprecation_warning(**kwargs)
f = MapDataPipe.functions[attribute_name]
function = functools.partial(f, self)
functools.update_wrapper(wrapper=function, wrapped=f, assigned=("__doc__",))
return function
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute_name}")
@classmethod
def register_function(cls, function_name, function):
cls.functions[function_name] = function
@classmethod
def register_datapipe_as_function(cls, function_name, cls_to_register):
if function_name in cls.functions:
raise Exception(f"Unable to add DataPipe function name {function_name} as it is already taken")
def class_function(cls, source_dp, *args, **kwargs):
result_pipe = cls(source_dp, *args, **kwargs)
return result_pipe
function = functools.partial(class_function, cls_to_register)
functools.update_wrapper(
wrapper=function, wrapped=cls_to_register, assigned=("__doc__",)
)
cls.functions[function_name] = function
def __getstate__(self):
"""
Serialize `lambda` functions when `dill` is available.
If this doesn't cover your custom DataPipe's use case, consider writing custom methods for
`__getstate__` and `__setstate__`, or use `pickle.dumps` for serialization.
"""
state = self.__dict__
if MapDataPipe.getstate_hook is not None:
return MapDataPipe.getstate_hook(state)
return state
def __reduce_ex__(self, *args, **kwargs):
if MapDataPipe.reduce_ex_hook is not None:
try:
return MapDataPipe.reduce_ex_hook(self)
except NotImplementedError:
pass
return super().__reduce_ex__(*args, **kwargs)
@classmethod
def set_getstate_hook(cls, hook_fn):
if MapDataPipe.getstate_hook is not None and hook_fn is not None:
raise Exception("Attempt to override existing getstate_hook")
MapDataPipe.getstate_hook = hook_fn
@classmethod
def set_reduce_ex_hook(cls, hook_fn):
if MapDataPipe.reduce_ex_hook is not None and hook_fn is not None:
raise Exception("Attempt to override existing reduce_ex_hook")
MapDataPipe.reduce_ex_hook = hook_fn
def __repr__(self):
if self.repr_hook is not None:
return self.repr_hook(self)
# Instead of showing <torch. ... .MapperMapDataPipe object at 0x.....>, return the class name
return str(self.__class__.__qualname__)
def __str__(self):
if self.str_hook is not None:
return self.str_hook(self)
# Instead of showing <torch. ... .MapperMapDataPipe object at 0x.....>, return the class name
return str(self.__class__.__qualname__)
def __dir__(self):
# for auto-completion in a REPL (e.g. Jupyter notebook)
return list(super().__dir__()) + list(self.functions.keys())
class _DataPipeSerializationWrapper:
def __init__(self, datapipe):
self._datapipe = datapipe
def __getstate__(self):
use_dill = False
try:
value = pickle.dumps(self._datapipe)
except Exception:
if HAS_DILL:
value = dill.dumps(self._datapipe)
use_dill = True
else:
raise
return (value, use_dill)
def __setstate__(self, state):
value, use_dill = state
if use_dill:
self._datapipe = dill.loads(value)
else:
self._datapipe = pickle.loads(value)
def __len__(self):
try:
return len(self._datapipe)
except Exception as e:
raise TypeError(
f"{type(self).__name__} instance doesn't have valid length"
) from e
class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe):
def __init__(self, datapipe: IterDataPipe[T_co]):
super().__init__(datapipe)
self._datapipe_iter: Optional[Iterator[T_co]] = None
def __iter__(self) -> "_IterDataPipeSerializationWrapper":
self._datapipe_iter = iter(self._datapipe)
return self
def __next__(self) -> T_co: # type: ignore[type-var]
assert self._datapipe_iter is not None
return next(self._datapipe_iter)
class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe):
def __getitem__(self, idx):
return self._datapipe[idx]
class DataChunk(list, Generic[T]):
def __init__(self, items):
super().__init__(items)
self.items = items
def as_str(self, indent=''):
res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]"
return res
def __iter__(self) -> Iterator[T]:
yield from super().__iter__()
def raw_iterator(self) -> T: # type: ignore[misc]
yield from self.items