52 lines
1.5 KiB
C++
52 lines
1.5 KiB
C++
#pragma once
|
|
|
|
// ${generated_comment}
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/core/functional.h>
|
|
#include <ATen/TensorGeometry.h>
|
|
|
|
#include "torch/csrc/autograd/function.h"
|
|
#include "torch/csrc/autograd/variable.h"
|
|
#include "torch/csrc/autograd/saved_variable.h"
|
|
#include <torch/csrc/Export.h>
|
|
|
|
#include <c10/core/SymIntArrayRef.h>
|
|
|
|
namespace torch { namespace autograd { namespace generated {
|
|
|
|
using at::Scalar;
|
|
using at::Tensor;
|
|
using at::IntArrayRef;
|
|
using at::ArrayRef;
|
|
using at::Type;
|
|
using at::TensorGeometry;
|
|
using at::ScalarType;
|
|
using c10::optional;
|
|
using c10::fmap;
|
|
|
|
inline std::vector<Tensor> unpack_list(at::ArrayRef<SavedVariable> xs, std::shared_ptr<Node> saved_for = nullptr) {
|
|
// NB: we must explicitly do the conversion in the lambda, otherwise template
|
|
// deduction will give a Tensor of Variable which is not convertible
|
|
return fmap(xs, [&saved_for](const SavedVariable& x) {
|
|
// TODO(crcrpar): Use `std::move(saved_for)` to avoid incrementing refcount, which would need refactoring.
|
|
return static_cast<Tensor>(x.unpack(saved_for));
|
|
});
|
|
}
|
|
|
|
inline c10::List<c10::optional<Tensor>> unpack_opt_list(at::ArrayRef<SavedVariable> xs, std::shared_ptr<Node> saved_for = nullptr) {
|
|
torch::List<c10::optional<Tensor>> result;
|
|
result.reserve(xs.size());
|
|
for (const SavedVariable& v : xs) {
|
|
auto var = v.unpack(saved_for);
|
|
result.push_back(var.defined() ? c10::optional<Tensor>(var) : c10::nullopt);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
using torch::autograd::TypeAndSize;
|
|
|
|
${autograd_function_declarations}
|
|
|
|
}}} // namespace torch::autograd::generated
|