98 lines
3.4 KiB
Python
98 lines
3.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" XNLI utils (dataset loading and evaluation)"""
|
|
|
|
|
|
import os
|
|
|
|
from ...utils import logging
|
|
from .utils import DataProcessor, InputExample
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class XnliProcessor(DataProcessor):
|
|
"""
|
|
Processor for the XNLI dataset. Adapted from
|
|
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207
|
|
"""
|
|
|
|
def __init__(self, language, train_language=None):
|
|
self.language = language
|
|
self.train_language = train_language
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
lg = self.language if self.train_language is None else self.train_language
|
|
lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv"))
|
|
examples = []
|
|
for i, line in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
guid = f"train-{i}"
|
|
text_a = line[0]
|
|
text_b = line[1]
|
|
label = "contradiction" if line[2] == "contradictory" else line[2]
|
|
if not isinstance(text_a, str):
|
|
raise ValueError(f"Training input {text_a} is not a string")
|
|
if not isinstance(text_b, str):
|
|
raise ValueError(f"Training input {text_b} is not a string")
|
|
if not isinstance(label, str):
|
|
raise ValueError(f"Training label {label} is not a string")
|
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
return examples
|
|
|
|
def get_test_examples(self, data_dir):
|
|
"""See base class."""
|
|
lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv"))
|
|
examples = []
|
|
for i, line in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
language = line[0]
|
|
if language != self.language:
|
|
continue
|
|
guid = f"test-{i}"
|
|
text_a = line[6]
|
|
text_b = line[7]
|
|
label = line[1]
|
|
if not isinstance(text_a, str):
|
|
raise ValueError(f"Training input {text_a} is not a string")
|
|
if not isinstance(text_b, str):
|
|
raise ValueError(f"Training input {text_b} is not a string")
|
|
if not isinstance(label, str):
|
|
raise ValueError(f"Training label {label} is not a string")
|
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
return examples
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["contradiction", "entailment", "neutral"]
|
|
|
|
|
|
xnli_processors = {
|
|
"xnli": XnliProcessor,
|
|
}
|
|
|
|
xnli_output_modes = {
|
|
"xnli": "classification",
|
|
}
|
|
|
|
xnli_tasks_num_labels = {
|
|
"xnli": 3,
|
|
}
|