287 lines
13 KiB
Python
287 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Processor class for Bark
|
|
"""
|
|
import json
|
|
import os
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
|
|
from ...feature_extraction_utils import BatchFeature
|
|
from ...processing_utils import ProcessorMixin
|
|
from ...utils import logging
|
|
from ...utils.hub import get_file_from_repo
|
|
from ..auto import AutoTokenizer
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class BarkProcessor(ProcessorMixin):
|
|
r"""
|
|
Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor.
|
|
|
|
Args:
|
|
tokenizer ([`PreTrainedTokenizer`]):
|
|
An instance of [`PreTrainedTokenizer`].
|
|
speaker_embeddings (`Dict[Dict[str]]`, *optional*):
|
|
Optional nested speaker embeddings dictionary. The first level contains voice preset names (e.g
|
|
`"en_speaker_4"`). The second level contains `"semantic_prompt"`, `"coarse_prompt"` and `"fine_prompt"`
|
|
embeddings. The values correspond to the path of the corresponding `np.ndarray`. See
|
|
[here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c) for
|
|
a list of `voice_preset_names`.
|
|
|
|
"""
|
|
|
|
tokenizer_class = "AutoTokenizer"
|
|
attributes = ["tokenizer"]
|
|
|
|
preset_shape = {
|
|
"semantic_prompt": 1,
|
|
"coarse_prompt": 2,
|
|
"fine_prompt": 2,
|
|
}
|
|
|
|
def __init__(self, tokenizer, speaker_embeddings=None):
|
|
super().__init__(tokenizer)
|
|
|
|
self.speaker_embeddings = speaker_embeddings
|
|
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls, pretrained_processor_name_or_path, speaker_embeddings_dict_path="speaker_embeddings_path.json", **kwargs
|
|
):
|
|
r"""
|
|
Instantiate a Bark processor associated with a pretrained model.
|
|
|
|
Args:
|
|
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
|
This can be either:
|
|
|
|
- a string, the *model id* of a pretrained [`BarkProcessor`] hosted inside a model repo on
|
|
huggingface.co.
|
|
- a path to a *directory* containing a processor saved using the [`~BarkProcessor.save_pretrained`]
|
|
method, e.g., `./my_model_directory/`.
|
|
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
|
|
The name of the `.json` file containing the speaker_embeddings dictionnary located in
|
|
`pretrained_model_name_or_path`. If `None`, no speaker_embeddings is loaded.
|
|
**kwargs
|
|
Additional keyword arguments passed along to both
|
|
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
|
|
"""
|
|
|
|
if speaker_embeddings_dict_path is not None:
|
|
speaker_embeddings_path = get_file_from_repo(
|
|
pretrained_processor_name_or_path,
|
|
speaker_embeddings_dict_path,
|
|
subfolder=kwargs.pop("subfolder", None),
|
|
cache_dir=kwargs.pop("cache_dir", None),
|
|
force_download=kwargs.pop("force_download", False),
|
|
proxies=kwargs.pop("proxies", None),
|
|
resume_download=kwargs.pop("resume_download", False),
|
|
local_files_only=kwargs.pop("local_files_only", False),
|
|
token=kwargs.pop("use_auth_token", None),
|
|
revision=kwargs.pop("revision", None),
|
|
)
|
|
if speaker_embeddings_path is None:
|
|
logger.warning(
|
|
f"""`{os.path.join(pretrained_processor_name_or_path,speaker_embeddings_dict_path)}` does not exists
|
|
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
|
|
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`."""
|
|
)
|
|
speaker_embeddings = None
|
|
else:
|
|
with open(speaker_embeddings_path) as speaker_embeddings_json:
|
|
speaker_embeddings = json.load(speaker_embeddings_json)
|
|
else:
|
|
speaker_embeddings = None
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_processor_name_or_path, **kwargs)
|
|
|
|
return cls(tokenizer=tokenizer, speaker_embeddings=speaker_embeddings)
|
|
|
|
def save_pretrained(
|
|
self,
|
|
save_directory,
|
|
speaker_embeddings_dict_path="speaker_embeddings_path.json",
|
|
speaker_embeddings_directory="speaker_embeddings",
|
|
push_to_hub: bool = False,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Saves the attributes of this processor (tokenizer...) in the specified directory so that it can be reloaded
|
|
using the [`~BarkProcessor.from_pretrained`] method.
|
|
|
|
Args:
|
|
save_directory (`str` or `os.PathLike`):
|
|
Directory where the tokenizer files and the speaker embeddings will be saved (directory will be created
|
|
if it does not exist).
|
|
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
|
|
The name of the `.json` file that will contains the speaker_embeddings nested path dictionnary, if it
|
|
exists, and that will be located in `pretrained_model_name_or_path/speaker_embeddings_directory`.
|
|
speaker_embeddings_directory (`str`, *optional*, defaults to `"speaker_embeddings/"`):
|
|
The name of the folder in which the speaker_embeddings arrays will be saved.
|
|
push_to_hub (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
|
namespace).
|
|
kwargs:
|
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
|
"""
|
|
if self.speaker_embeddings is not None:
|
|
os.makedirs(os.path.join(save_directory, speaker_embeddings_directory, "v2"), exist_ok=True)
|
|
|
|
embeddings_dict = {}
|
|
|
|
embeddings_dict["repo_or_path"] = save_directory
|
|
|
|
for prompt_key in self.speaker_embeddings:
|
|
if prompt_key != "repo_or_path":
|
|
voice_preset = self._load_voice_preset(prompt_key)
|
|
|
|
tmp_dict = {}
|
|
for key in self.speaker_embeddings[prompt_key]:
|
|
np.save(
|
|
os.path.join(
|
|
embeddings_dict["repo_or_path"], speaker_embeddings_directory, f"{prompt_key}_{key}"
|
|
),
|
|
voice_preset[key],
|
|
allow_pickle=False,
|
|
)
|
|
tmp_dict[key] = os.path.join(speaker_embeddings_directory, f"{prompt_key}_{key}.npy")
|
|
|
|
embeddings_dict[prompt_key] = tmp_dict
|
|
|
|
with open(os.path.join(save_directory, speaker_embeddings_dict_path), "w") as fp:
|
|
json.dump(embeddings_dict, fp)
|
|
|
|
super().save_pretrained(save_directory, push_to_hub, **kwargs)
|
|
|
|
def _load_voice_preset(self, voice_preset: str = None, **kwargs):
|
|
voice_preset_paths = self.speaker_embeddings[voice_preset]
|
|
|
|
voice_preset_dict = {}
|
|
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
|
|
if key not in voice_preset_paths:
|
|
raise ValueError(
|
|
f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]."
|
|
)
|
|
|
|
path = get_file_from_repo(
|
|
self.speaker_embeddings.get("repo_or_path", "/"),
|
|
voice_preset_paths[key],
|
|
subfolder=kwargs.pop("subfolder", None),
|
|
cache_dir=kwargs.pop("cache_dir", None),
|
|
force_download=kwargs.pop("force_download", False),
|
|
proxies=kwargs.pop("proxies", None),
|
|
resume_download=kwargs.pop("resume_download", False),
|
|
local_files_only=kwargs.pop("local_files_only", False),
|
|
token=kwargs.pop("use_auth_token", None),
|
|
revision=kwargs.pop("revision", None),
|
|
)
|
|
if path is None:
|
|
raise ValueError(
|
|
f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"),voice_preset_paths[key])}` does not exists
|
|
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
|
|
embeddings."""
|
|
)
|
|
|
|
voice_preset_dict[key] = np.load(path)
|
|
|
|
return voice_preset_dict
|
|
|
|
def _validate_voice_preset_dict(self, voice_preset: Optional[dict] = None):
|
|
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
|
|
if key not in voice_preset:
|
|
raise ValueError(f"Voice preset unrecognized, missing {key} as a key.")
|
|
|
|
if not isinstance(voice_preset[key], np.ndarray):
|
|
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
|
|
|
|
if len(voice_preset[key].shape) != self.preset_shape[key]:
|
|
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
|
|
|
|
def __call__(
|
|
self,
|
|
text=None,
|
|
voice_preset=None,
|
|
return_tensors="pt",
|
|
max_length=256,
|
|
add_special_tokens=False,
|
|
return_attention_mask=True,
|
|
return_token_type_ids=False,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs`
|
|
arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a
|
|
voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded
|
|
to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename.
|
|
|
|
Args:
|
|
text (`str`, `List[str]`, `List[List[str]]`):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
voice_preset (`str`, `Dict[np.ndarray]`):
|
|
The voice preset, i.e the speaker embeddings. It can either be a valid voice_preset name, e.g
|
|
`"en_speaker_1"`, or directly a dictionnary of `np.ndarray` embeddings for each submodel of `Bark`. Or
|
|
it can be a valid file name of a local `.npz` single voice preset.
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors of a particular framework. Acceptable values are:
|
|
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
|
|
Returns:
|
|
Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the
|
|
`tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type.
|
|
"""
|
|
if voice_preset is not None and not isinstance(voice_preset, dict):
|
|
if (
|
|
isinstance(voice_preset, str)
|
|
and self.speaker_embeddings is not None
|
|
and voice_preset in self.speaker_embeddings
|
|
):
|
|
voice_preset = self._load_voice_preset(voice_preset)
|
|
|
|
else:
|
|
if isinstance(voice_preset, str) and not voice_preset.endswith(".npz"):
|
|
voice_preset = voice_preset + ".npz"
|
|
|
|
voice_preset = np.load(voice_preset)
|
|
|
|
if voice_preset is not None:
|
|
self._validate_voice_preset_dict(voice_preset, **kwargs)
|
|
voice_preset = BatchFeature(data=voice_preset, tensor_type=return_tensors)
|
|
|
|
encoded_text = self.tokenizer(
|
|
text,
|
|
return_tensors=return_tensors,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
return_attention_mask=return_attention_mask,
|
|
return_token_type_ids=return_token_type_ids,
|
|
add_special_tokens=add_special_tokens,
|
|
**kwargs,
|
|
)
|
|
|
|
if voice_preset is not None:
|
|
encoded_text["history_prompt"] = voice_preset
|
|
|
|
return encoded_text
|