242 lines
9.1 KiB
Python
242 lines
9.1 KiB
Python
# coding=utf-8
|
|
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tokenization classes for CANINE."""
|
|
|
|
from typing import Dict, List, Optional
|
|
|
|
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
# Unicode defines 1,114,112 total “codepoints”
|
|
UNICODE_VOCAB_SIZE = 1114112
|
|
|
|
# Below: Constants defining canonical codepoints for special, pseudo-characters.
|
|
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
|
|
PAD = 0
|
|
CLS = 0xE000
|
|
SEP = 0xE001
|
|
BOS = 0xE002
|
|
MASK = 0xE003
|
|
RESERVED = 0xE004
|
|
|
|
# Maps special codepoints to human-readable names.
|
|
SPECIAL_CODEPOINTS: Dict[int, str] = {
|
|
# Special symbols are represented using codepoints values that are valid,
|
|
# but designated as "Private Use", meaning that they will never be assigned
|
|
# characters by the Unicode Consortium, and are thus safe for use here.
|
|
#
|
|
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
|
|
# excluded and should fail with a hard error.
|
|
CLS: "[CLS]",
|
|
SEP: "[SEP]",
|
|
BOS: "[BOS]",
|
|
MASK: "[MASK]",
|
|
PAD: "[PAD]",
|
|
RESERVED: "[RESERVED]",
|
|
}
|
|
|
|
# Maps special codepoint human-readable names to their codepoint values.
|
|
SPECIAL_CODEPOINTS_BY_NAME: Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
|
|
|
|
|
|
class CanineTokenizer(PreTrainedTokenizer):
|
|
r"""
|
|
Construct a CANINE tokenizer (i.e. a character splitter). It turns text into a sequence of characters, and then
|
|
converts each character into its Unicode code point.
|
|
|
|
[`CanineTokenizer`] inherits from [`PreTrainedTokenizer`].
|
|
|
|
Refer to superclass [`PreTrainedTokenizer`] for usage examples and documentation concerning parameters.
|
|
|
|
Args:
|
|
model_max_length (`int`, *optional*, defaults to 2048):
|
|
The maximum sentence length the model accepts.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
bos_token=chr(CLS),
|
|
eos_token=chr(SEP),
|
|
sep_token=chr(SEP),
|
|
cls_token=chr(CLS),
|
|
pad_token=chr(PAD),
|
|
mask_token=chr(MASK),
|
|
add_prefix_space=False,
|
|
model_max_length=2048,
|
|
**kwargs,
|
|
):
|
|
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
|
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
|
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
|
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
|
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
|
|
|
# Mask token behave like a normal word, i.e. include the space before it
|
|
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
|
|
|
# Creates a mapping for looking up the IDs of special symbols.
|
|
self._special_codepoints: Dict[str, int] = {}
|
|
for codepoint, name in SPECIAL_CODEPOINTS.items():
|
|
self._special_codepoints[name] = codepoint
|
|
|
|
# Creates a mapping for looking up the string forms of special symbol IDs.
|
|
self._special_codepoint_strings: Dict[int, str] = {
|
|
codepoint: name for name, codepoint in self._special_codepoints.items()
|
|
}
|
|
|
|
self._unicode_vocab_size = UNICODE_VOCAB_SIZE
|
|
self._num_special_tokens = len(self._special_codepoints)
|
|
|
|
super().__init__(
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
sep_token=sep_token,
|
|
cls_token=cls_token,
|
|
pad_token=pad_token,
|
|
mask_token=mask_token,
|
|
add_prefix_space=add_prefix_space,
|
|
model_max_length=model_max_length,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def vocab_size(self) -> int:
|
|
return self._unicode_vocab_size
|
|
|
|
def get_vocab(self):
|
|
vocab = {chr(i): i for i in range(self.vocab_size)}
|
|
vocab.update(self.added_tokens_encoder)
|
|
return vocab
|
|
|
|
def _tokenize(self, text: str) -> List[str]:
|
|
"""Tokenize a string (i.e. perform character splitting)."""
|
|
return list(text)
|
|
|
|
def _convert_token_to_id(self, token: str) -> int:
|
|
"""Converts a token (i.e. a Unicode character) in an id (i.e. its integer Unicode code point value)."""
|
|
try:
|
|
return ord(token)
|
|
except TypeError:
|
|
raise ValueError(f"invalid token: '{token}'")
|
|
|
|
def _convert_id_to_token(self, index: int) -> str:
|
|
"""
|
|
Converts a Unicode code point (integer) in a token (str). In case it's a special code point, convert to
|
|
human-readable format.
|
|
"""
|
|
try:
|
|
if index in SPECIAL_CODEPOINTS:
|
|
return SPECIAL_CODEPOINTS[index]
|
|
return chr(index)
|
|
except TypeError:
|
|
raise ValueError(f"invalid id: {index}")
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
return "".join(tokens)
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. A CANINE sequence has the following format:
|
|
|
|
- single sequence: `[CLS] X [SEP]`
|
|
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
|
|
result = cls + token_ids_0 + sep
|
|
if token_ids_1 is not None:
|
|
result += token_ids_1 + sep
|
|
return result
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` method.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
|
|
result = [1] + ([0] * len(token_ids_0)) + [1]
|
|
if token_ids_1 is not None:
|
|
result += ([0] * len(token_ids_1)) + [1]
|
|
return result
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CANINE
|
|
sequence pair mask has the following format:
|
|
|
|
```
|
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
|
| first sequence | second sequence |
|
|
```
|
|
|
|
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
|
|
result = len(cls + token_ids_0 + sep) * [0]
|
|
if token_ids_1 is not None:
|
|
result += len(token_ids_1 + sep) * [1]
|
|
return result
|
|
|
|
# CanineTokenizer has no vocab file
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
|
|
return ()
|