517 lines
20 KiB
Python
517 lines
20 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tokenization classes for CLIP."""
|
|
|
|
import json
|
|
import os
|
|
import unicodedata
|
|
from functools import lru_cache
|
|
from typing import List, Optional, Tuple
|
|
|
|
import regex as re
|
|
|
|
from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
VOCAB_FILES_NAMES = {
|
|
"vocab_file": "vocab.json",
|
|
"merges_file": "merges.txt",
|
|
}
|
|
|
|
|
|
@lru_cache()
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
|
characters the bpe code barfs on.
|
|
|
|
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
|
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
|
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
|
tables between utf-8 bytes and unicode strings.
|
|
"""
|
|
bs = (
|
|
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
|
)
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8 + n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
|
|
def get_pairs(word):
|
|
"""
|
|
Return set of symbol pairs in a word.
|
|
|
|
Word is represented as tuple of symbols (symbols being variable-length strings).
|
|
"""
|
|
pairs = set()
|
|
prev_char = word[0]
|
|
for char in word[1:]:
|
|
pairs.add((prev_char, char))
|
|
prev_char = char
|
|
return pairs
|
|
|
|
|
|
def whitespace_clean(text):
|
|
text = re.sub(r"\s+", " ", text)
|
|
text = text.strip()
|
|
return text
|
|
|
|
|
|
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
|
def whitespace_tokenize(text):
|
|
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
|
text = text.strip()
|
|
if not text:
|
|
return []
|
|
tokens = text.split()
|
|
return tokens
|
|
|
|
|
|
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
|
class BasicTokenizer(object):
|
|
"""
|
|
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
|
|
|
Args:
|
|
do_lower_case (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to lowercase the input when tokenizing.
|
|
never_split (`Iterable`, *optional*):
|
|
Collection of tokens which will never be split during tokenization. Only has an effect when
|
|
`do_basic_tokenize=True`
|
|
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to tokenize Chinese characters.
|
|
|
|
This should likely be deactivated for Japanese (see this
|
|
[issue](https://github.com/huggingface/transformers/issues/328)).
|
|
strip_accents (`bool`, *optional*):
|
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
|
value for `lowercase` (as in the original BERT).
|
|
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
|
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
|
the full context of the words, such as contractions.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
do_lower_case=True,
|
|
never_split=None,
|
|
tokenize_chinese_chars=True,
|
|
strip_accents=None,
|
|
do_split_on_punc=True,
|
|
):
|
|
if never_split is None:
|
|
never_split = []
|
|
self.do_lower_case = do_lower_case
|
|
self.never_split = set(never_split)
|
|
self.tokenize_chinese_chars = tokenize_chinese_chars
|
|
self.strip_accents = strip_accents
|
|
self.do_split_on_punc = do_split_on_punc
|
|
|
|
def tokenize(self, text, never_split=None):
|
|
"""
|
|
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
|
|
|
Args:
|
|
never_split (`List[str]`, *optional*)
|
|
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
|
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
|
"""
|
|
# union() returns a new set by concatenating the two sets.
|
|
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
|
text = self._clean_text(text)
|
|
|
|
# This was added on November 1st, 2018 for the multilingual and Chinese
|
|
# models. This is also applied to the English models now, but it doesn't
|
|
# matter since the English models were not trained on any Chinese data
|
|
# and generally don't have any Chinese data in them (there are Chinese
|
|
# characters in the vocabulary because Wikipedia does have some Chinese
|
|
# words in the English Wikipedia.).
|
|
if self.tokenize_chinese_chars:
|
|
text = self._tokenize_chinese_chars(text)
|
|
# prevents treating the same character with different unicode codepoints as different characters
|
|
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
|
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
|
split_tokens = []
|
|
for token in orig_tokens:
|
|
if token not in never_split:
|
|
if self.do_lower_case:
|
|
token = token.lower()
|
|
if self.strip_accents is not False:
|
|
token = self._run_strip_accents(token)
|
|
elif self.strip_accents:
|
|
token = self._run_strip_accents(token)
|
|
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
|
|
|
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
|
return output_tokens
|
|
|
|
def _run_strip_accents(self, text):
|
|
"""Strips accents from a piece of text."""
|
|
text = unicodedata.normalize("NFD", text)
|
|
output = []
|
|
for char in text:
|
|
cat = unicodedata.category(char)
|
|
if cat == "Mn":
|
|
continue
|
|
output.append(char)
|
|
return "".join(output)
|
|
|
|
def _run_split_on_punc(self, text, never_split=None):
|
|
"""Splits punctuation on a piece of text."""
|
|
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
|
return [text]
|
|
chars = list(text)
|
|
i = 0
|
|
start_new_word = True
|
|
output = []
|
|
while i < len(chars):
|
|
char = chars[i]
|
|
if _is_punctuation(char):
|
|
output.append([char])
|
|
start_new_word = True
|
|
else:
|
|
if start_new_word:
|
|
output.append([])
|
|
start_new_word = False
|
|
output[-1].append(char)
|
|
i += 1
|
|
|
|
return ["".join(x) for x in output]
|
|
|
|
def _tokenize_chinese_chars(self, text):
|
|
"""Adds whitespace around any CJK character."""
|
|
output = []
|
|
for char in text:
|
|
cp = ord(char)
|
|
if self._is_chinese_char(cp):
|
|
output.append(" ")
|
|
output.append(char)
|
|
output.append(" ")
|
|
else:
|
|
output.append(char)
|
|
return "".join(output)
|
|
|
|
def _is_chinese_char(self, cp):
|
|
"""Checks whether CP is the codepoint of a CJK character."""
|
|
# This defines a "chinese character" as anything in the CJK Unicode block:
|
|
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
|
#
|
|
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
|
# despite its name. The modern Korean Hangul alphabet is a different block,
|
|
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
|
# space-separated words, so they are not treated specially and handled
|
|
# like the all of the other languages.
|
|
if (
|
|
(cp >= 0x4E00 and cp <= 0x9FFF)
|
|
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
|
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
|
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
|
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
|
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
|
or (cp >= 0xF900 and cp <= 0xFAFF)
|
|
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
|
): #
|
|
return True
|
|
|
|
return False
|
|
|
|
def _clean_text(self, text):
|
|
"""Performs invalid character removal and whitespace cleanup on text."""
|
|
output = []
|
|
for char in text:
|
|
cp = ord(char)
|
|
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
|
continue
|
|
if _is_whitespace(char):
|
|
output.append(" ")
|
|
else:
|
|
output.append(char)
|
|
return "".join(output)
|
|
|
|
|
|
class CLIPTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct a CLIP tokenizer. Based on byte-level Byte-Pair-Encoding.
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
|
this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
vocab_file (`str`):
|
|
Path to the vocabulary file.
|
|
merges_file (`str`):
|
|
Path to the merges file.
|
|
errors (`str`, *optional*, defaults to `"replace"`):
|
|
Paradigm to follow when decoding bytes to UTF-8. See
|
|
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
|
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
|
|
The beginning of sequence token.
|
|
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
|
The end of sequence token.
|
|
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
merges_file,
|
|
errors="replace",
|
|
unk_token="<|endoftext|>",
|
|
bos_token="<|startoftext|>",
|
|
eos_token="<|endoftext|>",
|
|
pad_token="<|endoftext|>", # hack to enable padding
|
|
**kwargs,
|
|
):
|
|
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
|
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
|
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
|
try:
|
|
import ftfy
|
|
|
|
self.fix_text = ftfy.fix_text
|
|
except ImportError:
|
|
logger.info("ftfy or spacy is not installed using custom BasicTokenizer instead of ftfy.")
|
|
self.nlp = BasicTokenizer(strip_accents=False, do_split_on_punc=False)
|
|
self.fix_text = None
|
|
|
|
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
|
self.encoder = json.load(vocab_handle)
|
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
self.errors = errors # how to handle errors in decoding
|
|
self.byte_encoder = bytes_to_unicode()
|
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
|
with open(merges_file, encoding="utf-8") as merges_handle:
|
|
bpe_merges = merges_handle.read().strip().split("\n")[1 : 49152 - 256 - 2 + 1]
|
|
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
|
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
|
self.cache = {"<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>"}
|
|
|
|
self.pat = re.compile(
|
|
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
|
re.IGNORECASE,
|
|
)
|
|
|
|
super().__init__(
|
|
errors=errors,
|
|
unk_token=unk_token,
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
pad_token=pad_token,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return len(self.encoder)
|
|
|
|
def get_vocab(self):
|
|
return dict(self.encoder, **self.added_tokens_encoder)
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. A CLIP sequence has the following format:
|
|
|
|
- single sequence: `<|startoftext|> X <|endoftext|>`
|
|
|
|
Pairs of sequences are not the expected use case, but they will be handled without a separator.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
bos_token = [self.bos_token_id]
|
|
eos_token = [self.eos_token_id]
|
|
|
|
if token_ids_1 is None:
|
|
return bos_token + token_ids_0 + eos_token
|
|
return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` method.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
|
|
if token_ids_1 is None:
|
|
return [1] + ([0] * len(token_ids_0)) + [1]
|
|
return [1] + ([0] * len(token_ids_0)) + [1] + [1] + ([0] * len(token_ids_1)) + [1]
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of
|
|
zeros is returned.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of zeros.
|
|
"""
|
|
bos_token = [self.bos_token_id]
|
|
eos_token = [self.eos_token_id]
|
|
|
|
if token_ids_1 is None:
|
|
return len(bos_token + token_ids_0 + eos_token) * [0]
|
|
return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0]
|
|
|
|
def bpe(self, token):
|
|
if token in self.cache:
|
|
return self.cache[token]
|
|
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
|
pairs = get_pairs(word)
|
|
|
|
if not pairs:
|
|
return token + "</w>"
|
|
|
|
while True:
|
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
|
if bigram not in self.bpe_ranks:
|
|
break
|
|
first, second = bigram
|
|
new_word = []
|
|
i = 0
|
|
while i < len(word):
|
|
try:
|
|
j = word.index(first, i)
|
|
except ValueError:
|
|
new_word.extend(word[i:])
|
|
break
|
|
else:
|
|
new_word.extend(word[i:j])
|
|
i = j
|
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
|
new_word.append(first + second)
|
|
i += 2
|
|
else:
|
|
new_word.append(word[i])
|
|
i += 1
|
|
new_word = tuple(new_word)
|
|
word = new_word
|
|
if len(word) == 1:
|
|
break
|
|
else:
|
|
pairs = get_pairs(word)
|
|
word = " ".join(word)
|
|
self.cache[token] = word
|
|
return word
|
|
|
|
def _tokenize(self, text):
|
|
"""Tokenize a string."""
|
|
bpe_tokens = []
|
|
if self.fix_text is None:
|
|
text = " ".join(self.nlp.tokenize(text))
|
|
else:
|
|
text = whitespace_clean(self.fix_text(text)).lower()
|
|
|
|
for token in re.findall(self.pat, text):
|
|
token = "".join(
|
|
self.byte_encoder[b] for b in token.encode("utf-8")
|
|
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
|
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
|
return bpe_tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
"""Converts a token (str) in an id using the vocab."""
|
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
return self.decoder.get(index)
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
"""Converts a sequence of tokens (string) in a single string."""
|
|
text = "".join(tokens)
|
|
byte_array = bytearray([self.byte_decoder[c] for c in text])
|
|
text = byte_array.decode("utf-8", errors=self.errors).replace("</w>", " ").strip()
|
|
return text
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
if not os.path.isdir(save_directory):
|
|
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
|
|
return
|
|
vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
merge_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
|
)
|
|
|
|
with open(vocab_file, "w", encoding="utf-8") as f:
|
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
|
|
|
index = 0
|
|
with open(merge_file, "w", encoding="utf-8") as writer:
|
|
writer.write("#version: 0.2\n")
|
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
|
if index != token_index:
|
|
logger.warning(
|
|
"Saving vocabulary to {}: BPE merge indices are not consecutive."
|
|
" Please check that the tokenizer is not corrupted!".format(merge_file)
|
|
)
|
|
index = token_index
|
|
writer.write(" ".join(bpe_tokens) + "\n")
|
|
index += 1
|
|
|
|
return vocab_file, merge_file
|