394 lines
17 KiB
Python
394 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Tokenization class for model DeBERTa."""
|
|
|
|
import json
|
|
import os
|
|
from typing import List, Optional, Tuple
|
|
|
|
import regex as re
|
|
|
|
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
|
|
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
|
characters the bpe code barfs on.
|
|
|
|
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
|
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
|
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
|
tables between utf-8 bytes and unicode strings.
|
|
"""
|
|
bs = (
|
|
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
|
)
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8 + n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
|
def get_pairs(word):
|
|
"""
|
|
Return set of symbol pairs in a word.
|
|
|
|
Word is represented as tuple of symbols (symbols being variable-length strings).
|
|
"""
|
|
pairs = set()
|
|
prev_char = word[0]
|
|
for char in word[1:]:
|
|
pairs.add((prev_char, char))
|
|
prev_char = char
|
|
return pairs
|
|
|
|
|
|
class DebertaTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct a DeBERTa tokenizer. Based on byte-level Byte-Pair-Encoding.
|
|
|
|
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
|
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
|
|
|
```python
|
|
>>> from transformers import DebertaTokenizer
|
|
|
|
>>> tokenizer = DebertaTokenizer.from_pretrained("microsoft/deberta-base")
|
|
>>> tokenizer("Hello world")["input_ids"]
|
|
[1, 31414, 232, 2]
|
|
|
|
>>> tokenizer(" Hello world")["input_ids"]
|
|
[1, 20920, 232, 2]
|
|
```
|
|
|
|
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
|
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
|
|
|
<Tip>
|
|
|
|
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
|
|
|
|
</Tip>
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
|
this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
vocab_file (`str`):
|
|
Path to the vocabulary file.
|
|
merges_file (`str`):
|
|
Path to the merges file.
|
|
errors (`str`, *optional*, defaults to `"replace"`):
|
|
Paradigm to follow when decoding bytes to UTF-8. See
|
|
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
|
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
|
|
The beginning of sequence token.
|
|
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
|
|
The end of sequence token.
|
|
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
|
sequence classification or for a text and a question for question answering. It is also used as the last
|
|
token of a sequence built with special tokens.
|
|
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
|
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
|
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
|
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
|
The token used for masking values. This is the token used when training this model with masked language
|
|
modeling. This is the token which the model will try to predict.
|
|
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
|
other word. (Deberta tokenizer detect beginning of words by the preceding space).
|
|
add_bos_token (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to add an initial <|endoftext|> to the input. This allows to treat the leading word just as
|
|
any other word.
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
merges_file,
|
|
errors="replace",
|
|
bos_token="[CLS]",
|
|
eos_token="[SEP]",
|
|
sep_token="[SEP]",
|
|
cls_token="[CLS]",
|
|
unk_token="[UNK]",
|
|
pad_token="[PAD]",
|
|
mask_token="[MASK]",
|
|
add_prefix_space=False,
|
|
add_bos_token=False,
|
|
**kwargs,
|
|
):
|
|
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
|
|
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
|
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
|
|
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
|
|
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
|
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
|
|
|
# Mask token behave like a normal word, i.e. include the space before it
|
|
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
|
self.add_bos_token = add_bos_token
|
|
|
|
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
|
self.encoder = json.load(vocab_handle)
|
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
self.errors = errors # how to handle errors in decoding
|
|
self.byte_encoder = bytes_to_unicode()
|
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
|
with open(merges_file, encoding="utf-8") as merges_handle:
|
|
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
|
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
|
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
|
self.cache = {}
|
|
self.add_prefix_space = add_prefix_space
|
|
|
|
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
|
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
|
|
|
super().__init__(
|
|
errors=errors,
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
unk_token=unk_token,
|
|
sep_token=sep_token,
|
|
cls_token=cls_token,
|
|
pad_token=pad_token,
|
|
mask_token=mask_token,
|
|
add_prefix_space=add_prefix_space,
|
|
add_bos_token=add_bos_token,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.vocab_size
|
|
def vocab_size(self):
|
|
return len(self.encoder)
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
|
def get_vocab(self):
|
|
return dict(self.encoder, **self.added_tokens_encoder)
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
|
def bpe(self, token):
|
|
if token in self.cache:
|
|
return self.cache[token]
|
|
word = tuple(token)
|
|
pairs = get_pairs(word)
|
|
|
|
if not pairs:
|
|
return token
|
|
|
|
while True:
|
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
|
if bigram not in self.bpe_ranks:
|
|
break
|
|
first, second = bigram
|
|
new_word = []
|
|
i = 0
|
|
while i < len(word):
|
|
try:
|
|
j = word.index(first, i)
|
|
except ValueError:
|
|
new_word.extend(word[i:])
|
|
break
|
|
else:
|
|
new_word.extend(word[i:j])
|
|
i = j
|
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
|
new_word.append(first + second)
|
|
i += 2
|
|
else:
|
|
new_word.append(word[i])
|
|
i += 1
|
|
new_word = tuple(new_word)
|
|
word = new_word
|
|
if len(word) == 1:
|
|
break
|
|
else:
|
|
pairs = get_pairs(word)
|
|
word = " ".join(word)
|
|
self.cache[token] = word
|
|
return word
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. A DeBERTa sequence has the following format:
|
|
|
|
- single sequence: [CLS] X [SEP]
|
|
- pair of sequences: [CLS] A [SEP] B [SEP]
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
if token_ids_1 is None:
|
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
sep = [self.sep_token_id]
|
|
return cls + token_ids_0 + sep + token_ids_1 + sep
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
|
|
if token_ids_1 is None:
|
|
return [1] + ([0] * len(token_ids_0)) + [1]
|
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
|
|
sequence pair mask has the following format:
|
|
|
|
```
|
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
|
| first sequence | second sequence |
|
|
```
|
|
|
|
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
|
|
if token_ids_1 is None:
|
|
return len(cls + token_ids_0 + sep) * [0]
|
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
|
def _tokenize(self, text):
|
|
"""Tokenize a string."""
|
|
bpe_tokens = []
|
|
for token in re.findall(self.pat, text):
|
|
token = "".join(
|
|
self.byte_encoder[b] for b in token.encode("utf-8")
|
|
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
|
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
|
return bpe_tokens
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
|
def _convert_token_to_id(self, token):
|
|
"""Converts a token (str) in an id using the vocab."""
|
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
return self.decoder.get(index)
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
|
def convert_tokens_to_string(self, tokens):
|
|
"""Converts a sequence of tokens (string) in a single string."""
|
|
text = "".join(tokens)
|
|
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
|
return text
|
|
|
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
if not os.path.isdir(save_directory):
|
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
|
return
|
|
vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
merge_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
|
)
|
|
|
|
with open(vocab_file, "w", encoding="utf-8") as f:
|
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
|
|
|
index = 0
|
|
with open(merge_file, "w", encoding="utf-8") as writer:
|
|
writer.write("#version: 0.2\n")
|
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
|
if index != token_index:
|
|
logger.warning(
|
|
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
|
" Please check that the tokenizer is not corrupted!"
|
|
)
|
|
index = token_index
|
|
writer.write(" ".join(bpe_tokens) + "\n")
|
|
index += 1
|
|
|
|
return vocab_file, merge_file
|
|
|
|
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
|
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
|
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
|
|
text = " " + text
|
|
return (text, kwargs)
|