153 lines
7.3 KiB
Python
153 lines
7.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Dilated Neighborhood Attention Transformer model configuration"""
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class DinatConfig(BackboneConfigMixin, PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`DinatModel`]. It is used to instantiate a Dinat
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the Dinat
|
|
[shi-labs/dinat-mini-in1k-224](https://huggingface.co/shi-labs/dinat-mini-in1k-224) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
patch_size (`int`, *optional*, defaults to 4):
|
|
The size (resolution) of each patch. NOTE: Only patch size of 4 is supported at the moment.
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
embed_dim (`int`, *optional*, defaults to 64):
|
|
Dimensionality of patch embedding.
|
|
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 5]`):
|
|
Number of layers in each level of the encoder.
|
|
num_heads (`List[int]`, *optional*, defaults to `[2, 4, 8, 16]`):
|
|
Number of attention heads in each layer of the Transformer encoder.
|
|
kernel_size (`int`, *optional*, defaults to 7):
|
|
Neighborhood Attention kernel size.
|
|
dilations (`List[List[int]]`, *optional*, defaults to `[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]]`):
|
|
Dilation value of each NA layer in the Transformer encoder.
|
|
mlp_ratio (`float`, *optional*, defaults to 3.0):
|
|
Ratio of MLP hidden dimensionality to embedding dimensionality.
|
|
qkv_bias (`bool`, *optional*, defaults to `True`):
|
|
Whether or not a learnable bias should be added to the queries, keys and values.
|
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for all fully connected layers in the embeddings and encoder.
|
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
|
Stochastic depth rate.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
|
|
`"selu"` and `"gelu_new"` are supported.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the layer normalization layers.
|
|
layer_scale_init_value (`float`, *optional*, defaults to 0.0):
|
|
The initial value for the layer scale. Disabled if <=0.
|
|
out_features (`List[str]`, *optional*):
|
|
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
|
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
|
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
|
same order as defined in the `stage_names` attribute.
|
|
out_indices (`List[int]`, *optional*):
|
|
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
|
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
|
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
|
same order as defined in the `stage_names` attribute.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import DinatConfig, DinatModel
|
|
|
|
>>> # Initializing a Dinat shi-labs/dinat-mini-in1k-224 style configuration
|
|
>>> configuration = DinatConfig()
|
|
|
|
>>> # Initializing a model (with random weights) from the shi-labs/dinat-mini-in1k-224 style configuration
|
|
>>> model = DinatModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "dinat"
|
|
|
|
attribute_map = {
|
|
"num_attention_heads": "num_heads",
|
|
"num_hidden_layers": "num_layers",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
patch_size=4,
|
|
num_channels=3,
|
|
embed_dim=64,
|
|
depths=[3, 4, 6, 5],
|
|
num_heads=[2, 4, 8, 16],
|
|
kernel_size=7,
|
|
dilations=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]],
|
|
mlp_ratio=3.0,
|
|
qkv_bias=True,
|
|
hidden_dropout_prob=0.0,
|
|
attention_probs_dropout_prob=0.0,
|
|
drop_path_rate=0.1,
|
|
hidden_act="gelu",
|
|
initializer_range=0.02,
|
|
layer_norm_eps=1e-5,
|
|
layer_scale_init_value=0.0,
|
|
out_features=None,
|
|
out_indices=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.embed_dim = embed_dim
|
|
self.depths = depths
|
|
self.num_layers = len(depths)
|
|
self.num_heads = num_heads
|
|
self.kernel_size = kernel_size
|
|
self.dilations = dilations
|
|
self.mlp_ratio = mlp_ratio
|
|
self.qkv_bias = qkv_bias
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.drop_path_rate = drop_path_rate
|
|
self.hidden_act = hidden_act
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.initializer_range = initializer_range
|
|
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
|
|
# this indicates the channel dimension after the last stage of the model
|
|
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
|
|
self.layer_scale_init_value = layer_scale_init_value
|
|
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
|
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
|
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
|
)
|